Text-to-3D
image-to-3d
File size: 6,774 Bytes
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import numpy as np


def l1(depth1, depth2):
    """
    Computes the l1 errors between the two depth maps.
    Takes preprocessed depths (no nans, infs and non-positive values)

    depth1:  one depth map
    depth2:  another depth map

    Returns:
        L1(log)

    """
    assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
    diff = depth1 - depth2
    num_pixels = float(diff.size)

    if num_pixels == 0:
        return np.nan
    else:
        return np.sum(np.absolute(diff)) / num_pixels


def l1_inverse(depth1, depth2):
    """
    Computes the l1 errors between inverses of two depth maps.
    Takes preprocessed depths (no nans, infs and non-positive values)

    depth1:  one depth map
    depth2:  another depth map

    Returns:
        L1(log)

    """
    assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
    diff = np.reciprocal(depth1) - np.reciprocal(depth2)
    num_pixels = float(diff.size)

    if num_pixels == 0:
        return np.nan
    else:
        return np.sum(np.absolute(diff)) / num_pixels


def rmse_log(depth1, depth2):
    """
    Computes the root min square errors between the logs of two depth maps.
    Takes preprocessed depths (no nans, infs and non-positive values)

    depth1:  one depth map
    depth2:  another depth map

    Returns:
        RMSE(log)

    """
    assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
    log_diff = np.log(depth1) - np.log(depth2)
    num_pixels = float(log_diff.size)

    if num_pixels == 0:
        return np.nan
    else:
        return np.sqrt(np.sum(np.square(log_diff)) / num_pixels)


def rmse(depth1, depth2):
    """
    Computes the root min square errors between the two depth maps.
    Takes preprocessed depths (no nans, infs and non-positive values)

    depth1:  one depth map
    depth2:  another depth map

    Returns:
        RMSE(log)

    """
    assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
    diff = depth1 - depth2
    num_pixels = float(diff.size)

    if num_pixels == 0:
        return np.nan
    else:
        return np.sqrt(np.sum(np.square(diff)) / num_pixels)


def scale_invariant(depth1, depth2):
    """
    Computes the scale invariant loss based on differences of logs of depth maps.
    Takes preprocessed depths (no nans, infs and non-positive values)

    depth1:  one depth map
    depth2:  another depth map

    Returns:
        scale_invariant_distance

    """
    # sqrt(Eq. 3)
    assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
    log_diff = np.log(depth1) - np.log(depth2)
    num_pixels = float(log_diff.size)

    if num_pixels == 0:
        return np.nan
    else:
        return np.sqrt(np.sum(np.square(log_diff)) / num_pixels - np.square(np.sum(log_diff)) / np.square(num_pixels))


def abs_relative(depth_pred, depth_gt):
    """
    Computes relative absolute distance.
    Takes preprocessed depths (no nans, infs and non-positive values)

    depth_pred:  depth map prediction
    depth_gt:    depth map ground truth

    Returns:
        abs_relative_distance

    """
    assert (np.all(np.isfinite(depth_pred) & np.isfinite(depth_gt) & (depth_pred >= 0) & (depth_gt >= 0)))
    diff = depth_pred - depth_gt
    num_pixels = float(diff.size)

    if num_pixels == 0:
        return np.nan
    else:
        return np.sum(np.absolute(diff) / depth_gt) / num_pixels


def avg_log10(depth1, depth2):
    """
    Computes average log_10 error (Liu, Neural Fields, 2015).
    Takes preprocessed depths (no nans, infs and non-positive values)

    depth1:  one depth map
    depth2:  another depth map

    Returns:
        abs_relative_distance

    """
    assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
    log_diff = np.log10(depth1) - np.log10(depth2)
    num_pixels = float(log_diff.size)

    if num_pixels == 0:
        return np.nan
    else:
        return np.sum(np.absolute(log_diff)) / num_pixels


def sq_relative(depth_pred, depth_gt):
    """
    Computes relative squared distance.
    Takes preprocessed depths (no nans, infs and non-positive values)

    depth_pred:  depth map prediction
    depth_gt:    depth map ground truth

    Returns:
        squared_relative_distance

    """
    assert (np.all(np.isfinite(depth_pred) & np.isfinite(depth_gt) & (depth_pred >= 0) & (depth_gt >= 0)))
    diff = depth_pred - depth_gt
    num_pixels = float(diff.size)

    if num_pixels == 0:
        return np.nan
    else:
        return np.sum(np.square(diff) / depth_gt) / num_pixels


def ratio_threshold(depth1, depth2, threshold):
    """
    Computes the percentage of pixels for which the ratio of the two depth maps is less than a given threshold.
    Takes preprocessed depths (no nans, infs and non-positive values)

    depth1:  one depth map
    depth2:  another depth map

    Returns:
        percentage of pixels with ratio less than the threshold

    """
    assert (threshold > 0.)
    assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 >= 0) & (depth2 >= 0)))
    log_diff = np.log(depth1) - np.log(depth2)
    num_pixels = float(log_diff.size)

    if num_pixels == 0:
        return np.nan
    else:
        return float(np.sum(np.absolute(log_diff) < np.log(threshold))) / num_pixels


def compute_depth_errors(depth_pred, depth_gt, valid_mask):
    """
    Computes different distance measures between two depth maps.

    depth_pred:           depth map prediction
    depth_gt:             depth map ground truth
    distances_to_compute: which distances to compute

    Returns:
        a dictionary with computed distances, and the number of valid pixels

    """
    depth_pred = depth_pred[valid_mask]
    depth_gt = depth_gt[valid_mask]
    num_valid = np.sum(valid_mask)

    distances_to_compute = ['l1',
                            'l1_inverse',
                            'scale_invariant',
                            'abs_relative',
                            'sq_relative',
                            'avg_log10',
                            'rmse_log',
                            'rmse',
                            'ratio_threshold_1.25',
                            'ratio_threshold_1.5625',
                            'ratio_threshold_1.953125']

    results = {'num_valid': num_valid}
    for dist in distances_to_compute:
        if dist.startswith('ratio_threshold'):
            threshold = float(dist.split('_')[-1])
            results[dist] = ratio_threshold(depth_pred, depth_gt, threshold)
        else:
            results[dist] = globals()[dist](depth_pred, depth_gt)

    return results