Text-to-3D
image-to-3d
File size: 15,840 Bytes
854f0d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from torch.utils.data import Dataset
from utils.misc_utils import read_pfm
import os
import numpy as np
import cv2
from PIL import Image
import torch
from torchvision import transforms as T
from data.scene import get_boundingbox

from models.rays import gen_rays_from_single_image, gen_random_rays_from_single_image

from termcolor import colored
import pdb
import random


def load_K_Rt_from_P(filename, P=None):
    if P is None:
        lines = open(filename).read().splitlines()
        if len(lines) == 4:
            lines = lines[1:]
        lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
        P = np.asarray(lines).astype(np.float32).squeeze()

    out = cv2.decomposeProjectionMatrix(P)
    K = out[0]
    R = out[1]
    t = out[2]

    K = K / K[2, 2]
    intrinsics = np.eye(4)
    intrinsics[:3, :3] = K

    pose = np.eye(4, dtype=np.float32)
    pose[:3, :3] = R.transpose()  # ? why need transpose here
    pose[:3, 3] = (t[:3] / t[3])[:, 0]

    return intrinsics, pose  # ! return cam2world matrix here


# ! load one ref-image with multiple src-images in camera coordinate system
class MVSDatasetDtuPerView(Dataset):
    def __init__(self, root_dir, split, n_views=3, img_wh=(640, 512), downSample=1.0,
                 split_filepath=None, pair_filepath=None,
                 N_rays=512,
                 vol_dims=[128, 128, 128], batch_size=1,
                 clean_image=False, importance_sample=False, test_ref_views=[]):

        self.root_dir = root_dir
        self.split = split

        self.img_wh = img_wh
        self.downSample = downSample
        self.num_all_imgs = 49  # this preprocessed DTU dataset has 49 images
        self.n_views = n_views
        self.N_rays = N_rays
        self.batch_size = batch_size  # - used for construct new metas for gru fusion training

        self.clean_image = clean_image
        self.importance_sample = importance_sample
        self.test_ref_views = test_ref_views  # used for testing
        self.scale_factor = 1.0
        self.scale_mat = np.float32(np.diag([1, 1, 1, 1.0]))

        if img_wh is not None:
            assert img_wh[0] % 32 == 0 and img_wh[1] % 32 == 0, \
                'img_wh must both be multiples of 32!'

        self.split_filepath = f'data/dtu/lists/{self.split}.txt' if split_filepath is None else split_filepath
        self.pair_filepath = f'data/dtu/dtu_pairs.txt' if pair_filepath is None else pair_filepath

        print(colored("loading all scenes together", 'red'))
        with open(self.split_filepath) as f:
            self.scans = [line.rstrip() for line in f.readlines()]

        self.all_intrinsics = []  # the cam info of the whole scene
        self.all_extrinsics = []
        self.all_near_fars = []

        self.metas, self.ref_src_pairs = self.build_metas()  # load ref-srcs view pairs info of the scene

        self.allview_ids = [i for i in range(self.num_all_imgs)]

        self.load_cam_info()  # load camera info of DTU, and estimate scale_mat

        self.build_remap()
        self.define_transforms()
        print(f'==> image down scale: {self.downSample}')

        # * bounding box for rendering
        self.bbox_min = np.array([-1.0, -1.0, -1.0])
        self.bbox_max = np.array([1.0, 1.0, 1.0])

        # - used for cost volume regularization
        self.voxel_dims = torch.tensor(vol_dims, dtype=torch.float32)
        self.partial_vol_origin = torch.Tensor([-1., -1., -1.])

    def build_remap(self):
        self.remap = np.zeros(np.max(self.allview_ids) + 1).astype('int')
        for i, item in enumerate(self.allview_ids):
            self.remap[item] = i

    def define_transforms(self):
        self.transform = T.Compose([T.ToTensor()])

    def build_metas(self):
        metas = []
        ref_src_pairs = {}
        # light conditions 0-6 for training
        # light condition 3 for testing (the brightest?)
        light_idxs = [3] if 'train' not in self.split else range(7)

        with open(self.pair_filepath) as f:
            num_viewpoint = int(f.readline())
            # viewpoints (49)
            for _ in range(num_viewpoint):
                ref_view = int(f.readline().rstrip())
                src_views = [int(x) for x in f.readline().rstrip().split()[1::2]]

                ref_src_pairs[ref_view] = src_views

        for light_idx in light_idxs:
            for scan in self.scans:
                with open(self.pair_filepath) as f:
                    num_viewpoint = int(f.readline())
                    # viewpoints (49)
                    for _ in range(num_viewpoint):
                        ref_view = int(f.readline().rstrip())
                        src_views = [int(x) for x in f.readline().rstrip().split()[1::2]]

                        # ! only for validation
                        if len(self.test_ref_views) > 0 and ref_view not in self.test_ref_views:
                            continue

                        metas += [(scan, light_idx, ref_view, src_views)]

        return metas, ref_src_pairs

    def read_cam_file(self, filename):
        with open(filename) as f:
            lines = [line.rstrip() for line in f.readlines()]
        # extrinsics: line [1,5), 4x4 matrix
        extrinsics = np.fromstring(' '.join(lines[1:5]), dtype=np.float32, sep=' ')
        extrinsics = extrinsics.reshape((4, 4))
        # intrinsics: line [7-10), 3x3 matrix
        intrinsics = np.fromstring(' '.join(lines[7:10]), dtype=np.float32, sep=' ')
        intrinsics = intrinsics.reshape((3, 3))
        # depth_min & depth_interval: line 11
        depth_min = float(lines[11].split()[0])
        depth_max = depth_min + float(lines[11].split()[1]) * 192
        self.depth_interval = float(lines[11].split()[1])
        intrinsics_ = np.float32(np.diag([1, 1, 1, 1]))
        intrinsics_[:3, :3] = intrinsics
        return intrinsics_, extrinsics, [depth_min, depth_max]

    def load_cam_info(self):
        for vid in range(self.num_all_imgs):
            proj_mat_filename = os.path.join(self.root_dir,
                                             f'Cameras/train/{vid:08d}_cam.txt')
            intrinsic, extrinsic, near_far = self.read_cam_file(proj_mat_filename)
            intrinsic[:2] *= 4  # * the provided intrinsics is 4x downsampled, now keep the same scale with image
            self.all_intrinsics.append(intrinsic)
            self.all_extrinsics.append(extrinsic)
            self.all_near_fars.append(near_far)

    def read_depth(self, filename):
        # import ipdb; ipdb.set_trace()
        depth_h = np.array(read_pfm(filename)[0], dtype=np.float32)  # (1200, 1600)
        depth_h = np.ones((1200, 1600))
        # print(depth_h.shape)
        depth_h = cv2.resize(depth_h, None, fx=0.5, fy=0.5,
                             interpolation=cv2.INTER_NEAREST)  # (600, 800)
        depth_h = depth_h[44:556, 80:720]  # (512, 640)
        # print(depth_h.shape)
        # import ipdb; ipdb.set_trace()
        depth_h = cv2.resize(depth_h, None, fx=self.downSample, fy=self.downSample,
                             interpolation=cv2.INTER_NEAREST)
        depth = cv2.resize(depth_h, None, fx=1.0 / 4, fy=1.0 / 4,
                           interpolation=cv2.INTER_NEAREST)

        return depth, depth_h

    def read_mask(self, filename):
        mask_h = cv2.imread(filename, 0)
        mask_h = cv2.resize(mask_h, None, fx=self.downSample, fy=self.downSample,
                            interpolation=cv2.INTER_NEAREST)
        mask = cv2.resize(mask_h, None, fx=0.25, fy=0.25,
                          interpolation=cv2.INTER_NEAREST)

        mask[mask > 0] = 1  # the masks stored in png are not binary
        mask_h[mask_h > 0] = 1

        return mask, mask_h

    def cal_scale_mat(self, img_hw, intrinsics, extrinsics, near_fars, factor=1.):
        center, radius, _ = get_boundingbox(img_hw, intrinsics, extrinsics, near_fars)
        radius = radius * factor
        scale_mat = np.diag([radius, radius, radius, 1.0])
        scale_mat[:3, 3] = center.cpu().numpy()
        scale_mat = scale_mat.astype(np.float32)

        return scale_mat, 1. / radius.cpu().numpy()

    def __len__(self):
        return len(self.metas)

    def __getitem__(self, idx):
        sample = {}
        scan, light_idx, ref_view, src_views = self.metas[idx % len(self.metas)]

        # generalized, load some images at once
        view_ids = [ref_view] + src_views[:self.n_views]
        # * transform from world system to camera system
        w2c_ref = self.all_extrinsics[self.remap[ref_view]]
        w2c_ref_inv = np.linalg.inv(w2c_ref)

        image_perm = 0  # only supervised on reference view

        imgs, depths_h, masks_h = [], [], []  # full size (640, 512)
        intrinsics, w2cs, near_fars = [], [], []  # record proj mats between views
        mask_dilated = None
        for i, vid in enumerate(view_ids):
            # NOTE that the id in image file names is from 1 to 49 (not 0~48)
            img_filename = os.path.join(self.root_dir,
                                        f'Rectified/{scan}_train/rect_{vid + 1:03d}_{light_idx}_r5000.png')
            depth_filename = os.path.join(self.root_dir,
                                          f'Depths/{scan}_train/depth_map_{vid:04d}.pfm')
            # print(depth_filename)
            mask_filename = os.path.join(self.root_dir,
                                         f'Masks_clean_dilated/{scan}_train/mask_{vid:04d}.png')

            img = Image.open(img_filename)
            img_wh = np.round(np.array(img.size) * self.downSample).astype('int')
            img = img.resize(img_wh, Image.BILINEAR)

            if os.path.exists(mask_filename) and self.clean_image:
                mask_l, mask_h = self.read_mask(mask_filename)
            else:
                # print(self.split, "don't find mask file", mask_filename)
                mask_h = np.ones([img_wh[1], img_wh[0]])
            masks_h.append(mask_h)

            if i == 0:
                kernel_size = 101  # default 101
                kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
                mask_dilated = np.float32(cv2.dilate(np.uint8(mask_h * 255), kernel, iterations=1) > 128)

            if self.clean_image:
                img = np.array(img)
                img[mask_h < 0.5] = 0.0

            img = self.transform(img)

            imgs += [img]

            index_mat = self.remap[vid]
            near_fars.append(self.all_near_fars[index_mat])
            intrinsics.append(self.all_intrinsics[index_mat])
            
            w2cs.append(self.all_extrinsics[index_mat] @ w2c_ref_inv)

            # print(depth_filename)
            if os.path.exists(depth_filename):  # and i == 0
                # print("file exists")
                depth_l, depth_h = self.read_depth(depth_filename)
                depths_h.append(depth_h)
        # ! estimate scale_mat
        scale_mat, scale_factor = self.cal_scale_mat(img_hw=[img_wh[1], img_wh[0]],
                                                     intrinsics=intrinsics, extrinsics=w2cs,
                                                     near_fars=near_fars, factor=1.1)

        # ! calculate the new w2cs after scaling
        new_near_fars = []
        new_w2cs = []
        new_c2ws = []
        new_affine_mats = []
        new_depths_h = []
        for intrinsic, extrinsic, near_far, depth in zip(intrinsics, w2cs, near_fars, depths_h):
            P = intrinsic @ extrinsic @ scale_mat
            P = P[:3, :4]
            # - should use load_K_Rt_from_P() to obtain c2w
            c2w = load_K_Rt_from_P(None, P)[1]
            w2c = np.linalg.inv(c2w)
            new_w2cs.append(w2c)
            new_c2ws.append(c2w)
            affine_mat = np.eye(4)
            affine_mat[:3, :4] = intrinsic[:3, :3] @ w2c[:3, :4]
            new_affine_mats.append(affine_mat)

            camera_o = c2w[:3, 3]
            dist = np.sqrt(np.sum(camera_o ** 2))
            near = dist - 1
            far = dist + 1

            new_near_fars.append([0.95 * near, 1.05 * far])
            new_depths_h.append(depth * scale_factor)

        imgs = torch.stack(imgs).float()
        print(new_near_fars)
        depths_h = np.stack(new_depths_h)
        masks_h = np.stack(masks_h)

        affine_mats = np.stack(new_affine_mats)
        intrinsics, w2cs, c2ws, near_fars = np.stack(intrinsics), np.stack(new_w2cs), np.stack(new_c2ws), np.stack(
            new_near_fars)

        if 'train' in self.split:
            start_idx = 0
        else:
            start_idx = 1

        sample['images'] = imgs  # (V, 3, H, W)
        sample['depths_h'] = torch.from_numpy(depths_h.astype(np.float32))  # (V, H, W)
        sample['masks_h'] = torch.from_numpy(masks_h.astype(np.float32))  # (V, H, W)
        sample['w2cs'] = torch.from_numpy(w2cs.astype(np.float32))  # (V, 4, 4)
        sample['c2ws'] = torch.from_numpy(c2ws.astype(np.float32))  # (V, 4, 4)
        sample['near_fars'] = torch.from_numpy(near_fars.astype(np.float32))  # (V, 2)
        sample['intrinsics'] = torch.from_numpy(intrinsics.astype(np.float32))[:, :3, :3]  # (V, 3, 3)
        sample['view_ids'] = torch.from_numpy(np.array(view_ids))
        sample['affine_mats'] = torch.from_numpy(affine_mats.astype(np.float32))  # ! in world space

        sample['light_idx'] = torch.tensor(light_idx)
        sample['scan'] = scan

        sample['scale_factor'] = torch.tensor(scale_factor)
        sample['img_wh'] = torch.from_numpy(img_wh)
        sample['render_img_idx'] = torch.tensor(image_perm)
        sample['partial_vol_origin'] = torch.tensor(self.partial_vol_origin, dtype=torch.float32)
        sample['meta'] = str(scan) + "_light" + str(light_idx) + "_refview" + str(ref_view)

        # - image to render
        sample['query_image'] = sample['images'][0]
        sample['query_c2w'] = sample['c2ws'][0]
        sample['query_w2c'] = sample['w2cs'][0]
        sample['query_intrinsic'] = sample['intrinsics'][0]
        sample['query_depth'] = sample['depths_h'][0]
        sample['query_mask'] = sample['masks_h'][0]
        sample['query_near_far'] = sample['near_fars'][0]

        sample['images'] = sample['images'][start_idx:]  # (V, 3, H, W)
        sample['depths_h'] = sample['depths_h'][start_idx:]  # (V, H, W)
        sample['masks_h'] = sample['masks_h'][start_idx:]  # (V, H, W)
        sample['w2cs'] = sample['w2cs'][start_idx:]  # (V, 4, 4)
        sample['c2ws'] = sample['c2ws'][start_idx:]  # (V, 4, 4)
        sample['intrinsics'] = sample['intrinsics'][start_idx:]  # (V, 3, 3)
        sample['view_ids'] = sample['view_ids'][start_idx:]
        sample['affine_mats'] = sample['affine_mats'][start_idx:]  # ! in world space

        sample['scale_mat'] = torch.from_numpy(scale_mat)
        sample['trans_mat'] = torch.from_numpy(w2c_ref_inv)

        # - generate rays
        if ('val' in self.split) or ('test' in self.split):
            sample_rays = gen_rays_from_single_image(
                img_wh[1], img_wh[0],
                sample['query_image'],
                sample['query_intrinsic'],
                sample['query_c2w'],
                depth=sample['query_depth'],
                mask=sample['query_mask'] if self.clean_image else None)
        else:
            sample_rays = gen_random_rays_from_single_image(
                img_wh[1], img_wh[0],
                self.N_rays,
                sample['query_image'],
                sample['query_intrinsic'],
                sample['query_c2w'],
                depth=sample['query_depth'],
                mask=sample['query_mask'] if self.clean_image else None,
                dilated_mask=mask_dilated,
                importance_sample=self.importance_sample)

        sample['rays'] = sample_rays

        return sample