File size: 15,840 Bytes
854f0d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
from torch.utils.data import Dataset
from utils.misc_utils import read_pfm
import os
import numpy as np
import cv2
from PIL import Image
import torch
from torchvision import transforms as T
from data.scene import get_boundingbox
from models.rays import gen_rays_from_single_image, gen_random_rays_from_single_image
from termcolor import colored
import pdb
import random
def load_K_Rt_from_P(filename, P=None):
if P is None:
lines = open(filename).read().splitlines()
if len(lines) == 4:
lines = lines[1:]
lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
P = np.asarray(lines).astype(np.float32).squeeze()
out = cv2.decomposeProjectionMatrix(P)
K = out[0]
R = out[1]
t = out[2]
K = K / K[2, 2]
intrinsics = np.eye(4)
intrinsics[:3, :3] = K
pose = np.eye(4, dtype=np.float32)
pose[:3, :3] = R.transpose() # ? why need transpose here
pose[:3, 3] = (t[:3] / t[3])[:, 0]
return intrinsics, pose # ! return cam2world matrix here
# ! load one ref-image with multiple src-images in camera coordinate system
class MVSDatasetDtuPerView(Dataset):
def __init__(self, root_dir, split, n_views=3, img_wh=(640, 512), downSample=1.0,
split_filepath=None, pair_filepath=None,
N_rays=512,
vol_dims=[128, 128, 128], batch_size=1,
clean_image=False, importance_sample=False, test_ref_views=[]):
self.root_dir = root_dir
self.split = split
self.img_wh = img_wh
self.downSample = downSample
self.num_all_imgs = 49 # this preprocessed DTU dataset has 49 images
self.n_views = n_views
self.N_rays = N_rays
self.batch_size = batch_size # - used for construct new metas for gru fusion training
self.clean_image = clean_image
self.importance_sample = importance_sample
self.test_ref_views = test_ref_views # used for testing
self.scale_factor = 1.0
self.scale_mat = np.float32(np.diag([1, 1, 1, 1.0]))
if img_wh is not None:
assert img_wh[0] % 32 == 0 and img_wh[1] % 32 == 0, \
'img_wh must both be multiples of 32!'
self.split_filepath = f'data/dtu/lists/{self.split}.txt' if split_filepath is None else split_filepath
self.pair_filepath = f'data/dtu/dtu_pairs.txt' if pair_filepath is None else pair_filepath
print(colored("loading all scenes together", 'red'))
with open(self.split_filepath) as f:
self.scans = [line.rstrip() for line in f.readlines()]
self.all_intrinsics = [] # the cam info of the whole scene
self.all_extrinsics = []
self.all_near_fars = []
self.metas, self.ref_src_pairs = self.build_metas() # load ref-srcs view pairs info of the scene
self.allview_ids = [i for i in range(self.num_all_imgs)]
self.load_cam_info() # load camera info of DTU, and estimate scale_mat
self.build_remap()
self.define_transforms()
print(f'==> image down scale: {self.downSample}')
# * bounding box for rendering
self.bbox_min = np.array([-1.0, -1.0, -1.0])
self.bbox_max = np.array([1.0, 1.0, 1.0])
# - used for cost volume regularization
self.voxel_dims = torch.tensor(vol_dims, dtype=torch.float32)
self.partial_vol_origin = torch.Tensor([-1., -1., -1.])
def build_remap(self):
self.remap = np.zeros(np.max(self.allview_ids) + 1).astype('int')
for i, item in enumerate(self.allview_ids):
self.remap[item] = i
def define_transforms(self):
self.transform = T.Compose([T.ToTensor()])
def build_metas(self):
metas = []
ref_src_pairs = {}
# light conditions 0-6 for training
# light condition 3 for testing (the brightest?)
light_idxs = [3] if 'train' not in self.split else range(7)
with open(self.pair_filepath) as f:
num_viewpoint = int(f.readline())
# viewpoints (49)
for _ in range(num_viewpoint):
ref_view = int(f.readline().rstrip())
src_views = [int(x) for x in f.readline().rstrip().split()[1::2]]
ref_src_pairs[ref_view] = src_views
for light_idx in light_idxs:
for scan in self.scans:
with open(self.pair_filepath) as f:
num_viewpoint = int(f.readline())
# viewpoints (49)
for _ in range(num_viewpoint):
ref_view = int(f.readline().rstrip())
src_views = [int(x) for x in f.readline().rstrip().split()[1::2]]
# ! only for validation
if len(self.test_ref_views) > 0 and ref_view not in self.test_ref_views:
continue
metas += [(scan, light_idx, ref_view, src_views)]
return metas, ref_src_pairs
def read_cam_file(self, filename):
with open(filename) as f:
lines = [line.rstrip() for line in f.readlines()]
# extrinsics: line [1,5), 4x4 matrix
extrinsics = np.fromstring(' '.join(lines[1:5]), dtype=np.float32, sep=' ')
extrinsics = extrinsics.reshape((4, 4))
# intrinsics: line [7-10), 3x3 matrix
intrinsics = np.fromstring(' '.join(lines[7:10]), dtype=np.float32, sep=' ')
intrinsics = intrinsics.reshape((3, 3))
# depth_min & depth_interval: line 11
depth_min = float(lines[11].split()[0])
depth_max = depth_min + float(lines[11].split()[1]) * 192
self.depth_interval = float(lines[11].split()[1])
intrinsics_ = np.float32(np.diag([1, 1, 1, 1]))
intrinsics_[:3, :3] = intrinsics
return intrinsics_, extrinsics, [depth_min, depth_max]
def load_cam_info(self):
for vid in range(self.num_all_imgs):
proj_mat_filename = os.path.join(self.root_dir,
f'Cameras/train/{vid:08d}_cam.txt')
intrinsic, extrinsic, near_far = self.read_cam_file(proj_mat_filename)
intrinsic[:2] *= 4 # * the provided intrinsics is 4x downsampled, now keep the same scale with image
self.all_intrinsics.append(intrinsic)
self.all_extrinsics.append(extrinsic)
self.all_near_fars.append(near_far)
def read_depth(self, filename):
# import ipdb; ipdb.set_trace()
depth_h = np.array(read_pfm(filename)[0], dtype=np.float32) # (1200, 1600)
depth_h = np.ones((1200, 1600))
# print(depth_h.shape)
depth_h = cv2.resize(depth_h, None, fx=0.5, fy=0.5,
interpolation=cv2.INTER_NEAREST) # (600, 800)
depth_h = depth_h[44:556, 80:720] # (512, 640)
# print(depth_h.shape)
# import ipdb; ipdb.set_trace()
depth_h = cv2.resize(depth_h, None, fx=self.downSample, fy=self.downSample,
interpolation=cv2.INTER_NEAREST)
depth = cv2.resize(depth_h, None, fx=1.0 / 4, fy=1.0 / 4,
interpolation=cv2.INTER_NEAREST)
return depth, depth_h
def read_mask(self, filename):
mask_h = cv2.imread(filename, 0)
mask_h = cv2.resize(mask_h, None, fx=self.downSample, fy=self.downSample,
interpolation=cv2.INTER_NEAREST)
mask = cv2.resize(mask_h, None, fx=0.25, fy=0.25,
interpolation=cv2.INTER_NEAREST)
mask[mask > 0] = 1 # the masks stored in png are not binary
mask_h[mask_h > 0] = 1
return mask, mask_h
def cal_scale_mat(self, img_hw, intrinsics, extrinsics, near_fars, factor=1.):
center, radius, _ = get_boundingbox(img_hw, intrinsics, extrinsics, near_fars)
radius = radius * factor
scale_mat = np.diag([radius, radius, radius, 1.0])
scale_mat[:3, 3] = center.cpu().numpy()
scale_mat = scale_mat.astype(np.float32)
return scale_mat, 1. / radius.cpu().numpy()
def __len__(self):
return len(self.metas)
def __getitem__(self, idx):
sample = {}
scan, light_idx, ref_view, src_views = self.metas[idx % len(self.metas)]
# generalized, load some images at once
view_ids = [ref_view] + src_views[:self.n_views]
# * transform from world system to camera system
w2c_ref = self.all_extrinsics[self.remap[ref_view]]
w2c_ref_inv = np.linalg.inv(w2c_ref)
image_perm = 0 # only supervised on reference view
imgs, depths_h, masks_h = [], [], [] # full size (640, 512)
intrinsics, w2cs, near_fars = [], [], [] # record proj mats between views
mask_dilated = None
for i, vid in enumerate(view_ids):
# NOTE that the id in image file names is from 1 to 49 (not 0~48)
img_filename = os.path.join(self.root_dir,
f'Rectified/{scan}_train/rect_{vid + 1:03d}_{light_idx}_r5000.png')
depth_filename = os.path.join(self.root_dir,
f'Depths/{scan}_train/depth_map_{vid:04d}.pfm')
# print(depth_filename)
mask_filename = os.path.join(self.root_dir,
f'Masks_clean_dilated/{scan}_train/mask_{vid:04d}.png')
img = Image.open(img_filename)
img_wh = np.round(np.array(img.size) * self.downSample).astype('int')
img = img.resize(img_wh, Image.BILINEAR)
if os.path.exists(mask_filename) and self.clean_image:
mask_l, mask_h = self.read_mask(mask_filename)
else:
# print(self.split, "don't find mask file", mask_filename)
mask_h = np.ones([img_wh[1], img_wh[0]])
masks_h.append(mask_h)
if i == 0:
kernel_size = 101 # default 101
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
mask_dilated = np.float32(cv2.dilate(np.uint8(mask_h * 255), kernel, iterations=1) > 128)
if self.clean_image:
img = np.array(img)
img[mask_h < 0.5] = 0.0
img = self.transform(img)
imgs += [img]
index_mat = self.remap[vid]
near_fars.append(self.all_near_fars[index_mat])
intrinsics.append(self.all_intrinsics[index_mat])
w2cs.append(self.all_extrinsics[index_mat] @ w2c_ref_inv)
# print(depth_filename)
if os.path.exists(depth_filename): # and i == 0
# print("file exists")
depth_l, depth_h = self.read_depth(depth_filename)
depths_h.append(depth_h)
# ! estimate scale_mat
scale_mat, scale_factor = self.cal_scale_mat(img_hw=[img_wh[1], img_wh[0]],
intrinsics=intrinsics, extrinsics=w2cs,
near_fars=near_fars, factor=1.1)
# ! calculate the new w2cs after scaling
new_near_fars = []
new_w2cs = []
new_c2ws = []
new_affine_mats = []
new_depths_h = []
for intrinsic, extrinsic, near_far, depth in zip(intrinsics, w2cs, near_fars, depths_h):
P = intrinsic @ extrinsic @ scale_mat
P = P[:3, :4]
# - should use load_K_Rt_from_P() to obtain c2w
c2w = load_K_Rt_from_P(None, P)[1]
w2c = np.linalg.inv(c2w)
new_w2cs.append(w2c)
new_c2ws.append(c2w)
affine_mat = np.eye(4)
affine_mat[:3, :4] = intrinsic[:3, :3] @ w2c[:3, :4]
new_affine_mats.append(affine_mat)
camera_o = c2w[:3, 3]
dist = np.sqrt(np.sum(camera_o ** 2))
near = dist - 1
far = dist + 1
new_near_fars.append([0.95 * near, 1.05 * far])
new_depths_h.append(depth * scale_factor)
imgs = torch.stack(imgs).float()
print(new_near_fars)
depths_h = np.stack(new_depths_h)
masks_h = np.stack(masks_h)
affine_mats = np.stack(new_affine_mats)
intrinsics, w2cs, c2ws, near_fars = np.stack(intrinsics), np.stack(new_w2cs), np.stack(new_c2ws), np.stack(
new_near_fars)
if 'train' in self.split:
start_idx = 0
else:
start_idx = 1
sample['images'] = imgs # (V, 3, H, W)
sample['depths_h'] = torch.from_numpy(depths_h.astype(np.float32)) # (V, H, W)
sample['masks_h'] = torch.from_numpy(masks_h.astype(np.float32)) # (V, H, W)
sample['w2cs'] = torch.from_numpy(w2cs.astype(np.float32)) # (V, 4, 4)
sample['c2ws'] = torch.from_numpy(c2ws.astype(np.float32)) # (V, 4, 4)
sample['near_fars'] = torch.from_numpy(near_fars.astype(np.float32)) # (V, 2)
sample['intrinsics'] = torch.from_numpy(intrinsics.astype(np.float32))[:, :3, :3] # (V, 3, 3)
sample['view_ids'] = torch.from_numpy(np.array(view_ids))
sample['affine_mats'] = torch.from_numpy(affine_mats.astype(np.float32)) # ! in world space
sample['light_idx'] = torch.tensor(light_idx)
sample['scan'] = scan
sample['scale_factor'] = torch.tensor(scale_factor)
sample['img_wh'] = torch.from_numpy(img_wh)
sample['render_img_idx'] = torch.tensor(image_perm)
sample['partial_vol_origin'] = torch.tensor(self.partial_vol_origin, dtype=torch.float32)
sample['meta'] = str(scan) + "_light" + str(light_idx) + "_refview" + str(ref_view)
# - image to render
sample['query_image'] = sample['images'][0]
sample['query_c2w'] = sample['c2ws'][0]
sample['query_w2c'] = sample['w2cs'][0]
sample['query_intrinsic'] = sample['intrinsics'][0]
sample['query_depth'] = sample['depths_h'][0]
sample['query_mask'] = sample['masks_h'][0]
sample['query_near_far'] = sample['near_fars'][0]
sample['images'] = sample['images'][start_idx:] # (V, 3, H, W)
sample['depths_h'] = sample['depths_h'][start_idx:] # (V, H, W)
sample['masks_h'] = sample['masks_h'][start_idx:] # (V, H, W)
sample['w2cs'] = sample['w2cs'][start_idx:] # (V, 4, 4)
sample['c2ws'] = sample['c2ws'][start_idx:] # (V, 4, 4)
sample['intrinsics'] = sample['intrinsics'][start_idx:] # (V, 3, 3)
sample['view_ids'] = sample['view_ids'][start_idx:]
sample['affine_mats'] = sample['affine_mats'][start_idx:] # ! in world space
sample['scale_mat'] = torch.from_numpy(scale_mat)
sample['trans_mat'] = torch.from_numpy(w2c_ref_inv)
# - generate rays
if ('val' in self.split) or ('test' in self.split):
sample_rays = gen_rays_from_single_image(
img_wh[1], img_wh[0],
sample['query_image'],
sample['query_intrinsic'],
sample['query_c2w'],
depth=sample['query_depth'],
mask=sample['query_mask'] if self.clean_image else None)
else:
sample_rays = gen_random_rays_from_single_image(
img_wh[1], img_wh[0],
self.N_rays,
sample['query_image'],
sample['query_intrinsic'],
sample['query_c2w'],
depth=sample['query_depth'],
mask=sample['query_mask'] if self.clean_image else None,
dilated_mask=mask_dilated,
importance_sample=self.importance_sample)
sample['rays'] = sample_rays
return sample
|