--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 00d76b30-158f-47f7-a1d7-35cc75aca298 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 739e7a837d762408_train_data.json ds_type: json format: custom path: /workspace/input_data/739e7a837d762408_train_data.json type: field_instruction: question field_output: response_j format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: Nexspear/00d76b30-158f-47f7-a1d7-35cc75aca298 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/739e7a837d762408_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 24435958-b5ed-47f9-9d8c-c9ab7927dd5d wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 24435958-b5ed-47f9-9d8c-c9ab7927dd5d warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 00d76b30-158f-47f7-a1d7-35cc75aca298 This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 5.4839 | | 5.2825 | 0.0056 | 9 | 5.2187 | | 3.8598 | 0.0112 | 18 | 3.9360 | | 3.4073 | 0.0168 | 27 | 3.3897 | | 3.1726 | 0.0224 | 36 | 3.2076 | | 2.9699 | 0.0280 | 45 | 3.1050 | | 2.9611 | 0.0336 | 54 | 3.0465 | | 3.0565 | 0.0392 | 63 | 3.0124 | | 2.9422 | 0.0448 | 72 | 2.9885 | | 2.9658 | 0.0503 | 81 | 2.9747 | | 2.956 | 0.0559 | 90 | 2.9686 | | 2.8909 | 0.0615 | 99 | 2.9674 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1