vazish commited on
Commit
9a36b42
·
unverified ·
1 Parent(s): 774b315
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,454 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:429643
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: Oracle Cloud - Infrastructure and Platform Services for Enterprises
12
+ sentences:
13
+ - PulseAudio - Ubuntu Wiki
14
+ - Documentation page not found - Read the Docs
15
+ - Dwarf Fortress beginner tips - Video Games on Sports Illustrated
16
+ - source_sentence: Suggest opt in User Test - Google Slides
17
+ sentences:
18
+ - ReleaseEngineering/TryServer - MozillaWiki
19
+ - Dwarf Fortress beginner tips - Video Games on Sports Illustrated
20
+ - Tutanota - Private Mailbox with End-to-End Encryption and Calendar
21
+ - source_sentence: https://portal.naviabenefits.com/part/prioritytasks.aspx
22
+ sentences:
23
+ - What to Expect - Pregnancy and Parenting Tips, Week-by-Week Guides
24
+ - Parents.com - Articles, Recipes, and Ideas for Family Activities
25
+ - Pinterest - Boards for Collecting and Sharing Inspiration on Any Topic
26
+ - source_sentence: ‎Apple Music - Web Player
27
+ sentences:
28
+ - BMW Connected Drive - Home Assistant
29
+ - Mary Stewart Phillips (1862-1928) - Find a Grave Memorial
30
+ - Sky Sports - Football, Formula 1, Cricket, and More
31
+ - source_sentence: Tidal - High-Fidelity Music Streaming with Master Quality Audio
32
+ sentences:
33
+ - Walmart - Everyday Low Prices on Groceries, Electronics, and More
34
+ - Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis
35
+ - Ambient Dreams Playlist on Amazon Music
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ model-index:
42
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
43
+ results:
44
+ - task:
45
+ type: semantic-similarity
46
+ name: Semantic Similarity
47
+ dataset:
48
+ name: Unknown
49
+ type: unknown
50
+ metrics:
51
+ - type: pearson_cosine
52
+ value: 0.9822505655251419
53
+ name: Pearson Cosine
54
+ - type: spearman_cosine
55
+ value: 0.2607864200673379
56
+ name: Spearman Cosine
57
+ ---
58
+
59
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
60
+
61
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
+
63
+ ## Model Details
64
+
65
+ ### Model Description
66
+ - **Model Type:** Sentence Transformer
67
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
68
+ - **Maximum Sequence Length:** 256 tokens
69
+ - **Output Dimensionality:** 384 dimensions
70
+ - **Similarity Function:** Cosine Similarity
71
+ <!-- - **Training Dataset:** Unknown -->
72
+ <!-- - **Language:** Unknown -->
73
+ <!-- - **License:** Unknown -->
74
+
75
+ ### Model Sources
76
+
77
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
78
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
79
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
80
+
81
+ ### Full Model Architecture
82
+
83
+ ```
84
+ SentenceTransformer(
85
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
86
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
87
+ (2): Normalize()
88
+ )
89
+ ```
90
+
91
+ ## Usage
92
+
93
+ ### Direct Usage (Sentence Transformers)
94
+
95
+ First install the Sentence Transformers library:
96
+
97
+ ```bash
98
+ pip install -U sentence-transformers
99
+ ```
100
+
101
+ Then you can load this model and run inference.
102
+ ```python
103
+ from sentence_transformers import SentenceTransformer
104
+
105
+ # Download from the 🤗 Hub
106
+ model = SentenceTransformer("vazish/all-MiniLM-L6-v2-fine-tuned_0")
107
+ # Run inference
108
+ sentences = [
109
+ 'Tidal - High-Fidelity Music Streaming with Master Quality Audio',
110
+ 'Walmart - Everyday Low Prices on Groceries, Electronics, and More',
111
+ 'Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis',
112
+ ]
113
+ embeddings = model.encode(sentences)
114
+ print(embeddings.shape)
115
+ # [3, 384]
116
+
117
+ # Get the similarity scores for the embeddings
118
+ similarities = model.similarity(embeddings, embeddings)
119
+ print(similarities.shape)
120
+ # [3, 3]
121
+ ```
122
+
123
+ <!--
124
+ ### Direct Usage (Transformers)
125
+
126
+ <details><summary>Click to see the direct usage in Transformers</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Downstream Usage (Sentence Transformers)
133
+
134
+ You can finetune this model on your own dataset.
135
+
136
+ <details><summary>Click to expand</summary>
137
+
138
+ </details>
139
+ -->
140
+
141
+ <!--
142
+ ### Out-of-Scope Use
143
+
144
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
145
+ -->
146
+
147
+ ## Evaluation
148
+
149
+ ### Metrics
150
+
151
+ #### Semantic Similarity
152
+
153
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
154
+
155
+ | Metric | Value |
156
+ |:--------------------|:-----------|
157
+ | pearson_cosine | 0.9823 |
158
+ | **spearman_cosine** | **0.2608** |
159
+
160
+ <!--
161
+ ## Bias, Risks and Limitations
162
+
163
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
164
+ -->
165
+
166
+ <!--
167
+ ### Recommendations
168
+
169
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
170
+ -->
171
+
172
+ ## Training Details
173
+
174
+ ### Training Dataset
175
+
176
+ #### Unnamed Dataset
177
+
178
+ * Size: 49,800 training samples
179
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
180
+ * Approximate statistics based on the first 1000 samples:
181
+ | | sentence_0 | sentence_1 | label |
182
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
183
+ | type | string | string | float |
184
+ | details | <ul><li>min: 10 tokens</li><li>mean: 14.76 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 14.64 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.04</li><li>max: 1.0</li></ul> |
185
+ * Samples:
186
+ | sentence_0 | sentence_1 | label |
187
+ |:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:-----------------|
188
+ | <code>TripAdvisor - Hotel Reviews, Photos, and Travel Forums</code> | <code>Docker Hub - Container Image Repository for DevOps Environments</code> | <code>0.0</code> |
189
+ | <code>Mastodon - Decentralized Social Media for Niche Communities</code> | <code>Allrecipes - User-Submitted Recipes, Reviews, and Cooking Tips</code> | <code>0.0</code> |
190
+ | <code>YouTube Music - Music Videos, Official Albums, and Live Performances</code> | <code>ESPN - Sports News, Live Scores, Stats, and Highlights</code> | <code>0.0</code> |
191
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
192
+ ```json
193
+ {
194
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
195
+ }
196
+ ```
197
+
198
+ ### Training Hyperparameters
199
+ #### Non-Default Hyperparameters
200
+
201
+ - `per_device_train_batch_size`: 32
202
+ - `per_device_eval_batch_size`: 32
203
+ - `multi_dataset_batch_sampler`: round_robin
204
+
205
+ #### All Hyperparameters
206
+ <details><summary>Click to expand</summary>
207
+
208
+ - `overwrite_output_dir`: False
209
+ - `do_predict`: False
210
+ - `eval_strategy`: no
211
+ - `prediction_loss_only`: True
212
+ - `per_device_train_batch_size`: 32
213
+ - `per_device_eval_batch_size`: 32
214
+ - `per_gpu_train_batch_size`: None
215
+ - `per_gpu_eval_batch_size`: None
216
+ - `gradient_accumulation_steps`: 1
217
+ - `eval_accumulation_steps`: None
218
+ - `torch_empty_cache_steps`: None
219
+ - `learning_rate`: 5e-05
220
+ - `weight_decay`: 0.0
221
+ - `adam_beta1`: 0.9
222
+ - `adam_beta2`: 0.999
223
+ - `adam_epsilon`: 1e-08
224
+ - `max_grad_norm`: 1
225
+ - `num_train_epochs`: 3
226
+ - `max_steps`: -1
227
+ - `lr_scheduler_type`: linear
228
+ - `lr_scheduler_kwargs`: {}
229
+ - `warmup_ratio`: 0.0
230
+ - `warmup_steps`: 0
231
+ - `log_level`: passive
232
+ - `log_level_replica`: warning
233
+ - `log_on_each_node`: True
234
+ - `logging_nan_inf_filter`: True
235
+ - `save_safetensors`: True
236
+ - `save_on_each_node`: False
237
+ - `save_only_model`: False
238
+ - `restore_callback_states_from_checkpoint`: False
239
+ - `no_cuda`: False
240
+ - `use_cpu`: False
241
+ - `use_mps_device`: False
242
+ - `seed`: 42
243
+ - `data_seed`: None
244
+ - `jit_mode_eval`: False
245
+ - `use_ipex`: False
246
+ - `bf16`: False
247
+ - `fp16`: False
248
+ - `fp16_opt_level`: O1
249
+ - `half_precision_backend`: auto
250
+ - `bf16_full_eval`: False
251
+ - `fp16_full_eval`: False
252
+ - `tf32`: None
253
+ - `local_rank`: 0
254
+ - `ddp_backend`: None
255
+ - `tpu_num_cores`: None
256
+ - `tpu_metrics_debug`: False
257
+ - `debug`: []
258
+ - `dataloader_drop_last`: False
259
+ - `dataloader_num_workers`: 0
260
+ - `dataloader_prefetch_factor`: None
261
+ - `past_index`: -1
262
+ - `disable_tqdm`: False
263
+ - `remove_unused_columns`: True
264
+ - `label_names`: None
265
+ - `load_best_model_at_end`: False
266
+ - `ignore_data_skip`: False
267
+ - `fsdp`: []
268
+ - `fsdp_min_num_params`: 0
269
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
270
+ - `fsdp_transformer_layer_cls_to_wrap`: None
271
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
272
+ - `deepspeed`: None
273
+ - `label_smoothing_factor`: 0.0
274
+ - `optim`: adamw_torch
275
+ - `optim_args`: None
276
+ - `adafactor`: False
277
+ - `group_by_length`: False
278
+ - `length_column_name`: length
279
+ - `ddp_find_unused_parameters`: None
280
+ - `ddp_bucket_cap_mb`: None
281
+ - `ddp_broadcast_buffers`: False
282
+ - `dataloader_pin_memory`: True
283
+ - `dataloader_persistent_workers`: False
284
+ - `skip_memory_metrics`: True
285
+ - `use_legacy_prediction_loop`: False
286
+ - `push_to_hub`: False
287
+ - `resume_from_checkpoint`: None
288
+ - `hub_model_id`: None
289
+ - `hub_strategy`: every_save
290
+ - `hub_private_repo`: None
291
+ - `hub_always_push`: False
292
+ - `gradient_checkpointing`: False
293
+ - `gradient_checkpointing_kwargs`: None
294
+ - `include_inputs_for_metrics`: False
295
+ - `include_for_metrics`: []
296
+ - `eval_do_concat_batches`: True
297
+ - `fp16_backend`: auto
298
+ - `push_to_hub_model_id`: None
299
+ - `push_to_hub_organization`: None
300
+ - `mp_parameters`:
301
+ - `auto_find_batch_size`: False
302
+ - `full_determinism`: False
303
+ - `torchdynamo`: None
304
+ - `ray_scope`: last
305
+ - `ddp_timeout`: 1800
306
+ - `torch_compile`: False
307
+ - `torch_compile_backend`: None
308
+ - `torch_compile_mode`: None
309
+ - `dispatch_batches`: None
310
+ - `split_batches`: None
311
+ - `include_tokens_per_second`: False
312
+ - `include_num_input_tokens_seen`: False
313
+ - `neftune_noise_alpha`: None
314
+ - `optim_target_modules`: None
315
+ - `batch_eval_metrics`: False
316
+ - `eval_on_start`: False
317
+ - `use_liger_kernel`: False
318
+ - `eval_use_gather_object`: False
319
+ - `average_tokens_across_devices`: False
320
+ - `prompts`: None
321
+ - `batch_sampler`: batch_sampler
322
+ - `multi_dataset_batch_sampler`: round_robin
323
+
324
+ </details>
325
+
326
+ ### Training Logs
327
+ | Epoch | Step | Training Loss | spearman_cosine |
328
+ |:------:|:-----:|:-------------:|:---------------:|
329
+ | 0.0372 | 500 | 0.0218 | - |
330
+ | 0.0745 | 1000 | 0.0151 | - |
331
+ | 0.1117 | 1500 | 0.0113 | - |
332
+ | 0.1490 | 2000 | 0.0076 | - |
333
+ | 0.1862 | 2500 | 0.0063 | - |
334
+ | 0.2234 | 3000 | 0.0054 | - |
335
+ | 0.2607 | 3500 | 0.0045 | - |
336
+ | 0.2979 | 4000 | 0.0041 | - |
337
+ | 0.3351 | 4500 | 0.0027 | - |
338
+ | 0.3724 | 5000 | 0.0028 | - |
339
+ | 0.4096 | 5500 | 0.0026 | - |
340
+ | 0.4469 | 6000 | 0.0021 | - |
341
+ | 0.4841 | 6500 | 0.0019 | - |
342
+ | 0.5213 | 7000 | 0.0022 | - |
343
+ | 0.5586 | 7500 | 0.0017 | - |
344
+ | 0.5958 | 8000 | 0.0018 | - |
345
+ | 0.6331 | 8500 | 0.0015 | - |
346
+ | 0.6703 | 9000 | 0.0015 | - |
347
+ | 0.7075 | 9500 | 0.0018 | - |
348
+ | 0.7448 | 10000 | 0.0014 | - |
349
+ | 0.7820 | 10500 | 0.0017 | - |
350
+ | 0.8192 | 11000 | 0.0012 | - |
351
+ | 0.8565 | 11500 | 0.0014 | - |
352
+ | 0.8937 | 12000 | 0.001 | - |
353
+ | 0.9310 | 12500 | 0.0011 | - |
354
+ | 0.9682 | 13000 | 0.001 | - |
355
+ | 1.0054 | 13500 | 0.0009 | - |
356
+ | 1.0427 | 14000 | 0.0011 | - |
357
+ | 1.0799 | 14500 | 0.001 | - |
358
+ | 1.1172 | 15000 | 0.0009 | - |
359
+ | 1.1544 | 15500 | 0.0008 | - |
360
+ | 1.1916 | 16000 | 0.001 | - |
361
+ | 1.2289 | 16500 | 0.0011 | - |
362
+ | 1.2661 | 17000 | 0.0011 | - |
363
+ | 1.3033 | 17500 | 0.0006 | - |
364
+ | 1.3406 | 18000 | 0.0011 | - |
365
+ | 1.3778 | 18500 | 0.0008 | - |
366
+ | 1.4151 | 19000 | 0.0011 | - |
367
+ | 1.4523 | 19500 | 0.0009 | - |
368
+ | 1.4895 | 20000 | 0.0011 | - |
369
+ | 1.5268 | 20500 | 0.0009 | - |
370
+ | 1.5640 | 21000 | 0.0009 | - |
371
+ | 1.6013 | 21500 | 0.0008 | - |
372
+ | 1.6385 | 22000 | 0.0005 | - |
373
+ | 1.6757 | 22500 | 0.001 | - |
374
+ | 1.7130 | 23000 | 0.0008 | - |
375
+ | 1.7502 | 23500 | 0.0007 | - |
376
+ | 1.7874 | 24000 | 0.0007 | - |
377
+ | 1.8247 | 24500 | 0.0008 | - |
378
+ | 1.8619 | 25000 | 0.001 | - |
379
+ | 1.8992 | 25500 | 0.0009 | - |
380
+ | 1.9364 | 26000 | 0.0008 | - |
381
+ | 1.9736 | 26500 | 0.0009 | - |
382
+ | 2.0109 | 27000 | 0.0007 | - |
383
+ | 2.0481 | 27500 | 0.0006 | - |
384
+ | 2.0854 | 28000 | 0.0007 | - |
385
+ | 2.1226 | 28500 | 0.0006 | - |
386
+ | 2.1598 | 29000 | 0.0007 | - |
387
+ | 2.1971 | 29500 | 0.001 | - |
388
+ | 2.2343 | 30000 | 0.0006 | - |
389
+ | 2.2715 | 30500 | 0.0006 | - |
390
+ | 2.3088 | 31000 | 0.001 | - |
391
+ | 2.3460 | 31500 | 0.0007 | - |
392
+ | 2.3833 | 32000 | 0.0008 | - |
393
+ | 2.4205 | 32500 | 0.0006 | - |
394
+ | 2.4577 | 33000 | 0.0007 | - |
395
+ | 2.4950 | 33500 | 0.0007 | - |
396
+ | 2.5322 | 34000 | 0.001 | - |
397
+ | 2.5694 | 34500 | 0.0007 | - |
398
+ | 2.6067 | 35000 | 0.0007 | - |
399
+ | 2.6439 | 35500 | 0.0008 | - |
400
+ | 2.6812 | 36000 | 0.0007 | - |
401
+ | 2.7184 | 36500 | 0.0006 | - |
402
+ | 2.7556 | 37000 | 0.0007 | - |
403
+ | 2.7929 | 37500 | 0.0007 | - |
404
+ | 2.8301 | 38000 | 0.0005 | - |
405
+ | 2.8674 | 38500 | 0.0009 | - |
406
+ | 2.9046 | 39000 | 0.0006 | - |
407
+ | 2.9418 | 39500 | 0.0007 | - |
408
+ | 2.9791 | 40000 | 0.0008 | - |
409
+ | -1 | -1 | - | 0.2608 |
410
+
411
+
412
+ ### Framework Versions
413
+ - Python: 3.11.11
414
+ - Sentence Transformers: 3.4.1
415
+ - Transformers: 4.48.2
416
+ - PyTorch: 2.5.1+cu124
417
+ - Accelerate: 1.3.0
418
+ - Datasets: 3.2.0
419
+ - Tokenizers: 0.21.0
420
+
421
+ ## Citation
422
+
423
+ ### BibTeX
424
+
425
+ #### Sentence Transformers
426
+ ```bibtex
427
+ @inproceedings{reimers-2019-sentence-bert,
428
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
429
+ author = "Reimers, Nils and Gurevych, Iryna",
430
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
431
+ month = "11",
432
+ year = "2019",
433
+ publisher = "Association for Computational Linguistics",
434
+ url = "https://arxiv.org/abs/1908.10084",
435
+ }
436
+ ```
437
+
438
+ <!--
439
+ ## Glossary
440
+
441
+ *Clearly define terms in order to be accessible across audiences.*
442
+ -->
443
+
444
+ <!--
445
+ ## Model Card Authors
446
+
447
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
448
+ -->
449
+
450
+ <!--
451
+ ## Model Card Contact
452
+
453
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
454
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "_name_or_path": "/content/model",
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "export_model_type": "transformer",
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 384,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "layer_norm_eps": 1e-12,
17
+ "max_position_embeddings": 512,
18
+ "model_type": "bert",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 6,
21
+ "pad_token_id": 0,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.46.3",
25
+ "type_vocab_size": 2,
26
+ "use_cache": true,
27
+ "vocab_size": 30522
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cce795656a2f5901d70c4ea6568b7c98a136a9f653ec4e8e499ac26270beffcb
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:506ac8fdb54c3d5401fc03fb7cc135553857779e2cc518dfb3341cf113ebe257
3
+ size 90448255
onnx/model_bnb4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77f96020b60846dbd7f86538280364c6f5e7d1fce2a1753debe0fa28a5b2a1dc
3
+ size 53958494
onnx/model_fp16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:492935c401e7ae513a959c9433dd204f159b501593bf732507b94d73081ae14d
3
+ size 45317631
onnx/model_int8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d8575a3ba5d8a44884f56579d2046d5883e4bbef1923840f7b6b561bc6a6918
3
+ size 22999753
onnx/model_q4.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:235764145072d6bc5e6ab9f61f17e893f47dd02cc6eef3a5a1967fbfbae31523
3
+ size 54621818
onnx/model_q4f16.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a462c3bbf68ad9d80c3367342d67fba38b871f683bd78a741479e9df6017dba
3
+ size 30061282
onnx/model_quantized.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d8575a3ba5d8a44884f56579d2046d5883e4bbef1923840f7b6b561bc6a6918
3
+ size 22999753
onnx/model_uint8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d985ea995e76faa0d7f542db38a3e08ecfedfc8b9cfa1143e8c13398803019d
3
+ size 22999753
quantize_config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "modes": [
3
+ "fp16",
4
+ "q8",
5
+ "int8",
6
+ "uint8",
7
+ "q4",
8
+ "q4f16",
9
+ "bnb4"
10
+ ],
11
+ "per_channel": true,
12
+ "reduce_range": true,
13
+ "block_size": null,
14
+ "is_symmetric": true,
15
+ "accuracy_level": null,
16
+ "quant_type": 1,
17
+ "op_block_list": null
18
+ }
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff