MonteXiaofeng commited on
Commit
13038c4
·
verified ·
1 Parent(s): 4d8d544

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md CHANGED
@@ -13,6 +13,76 @@ base_model:
13
 
14
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642f6c64f945a8a5c9ee5b5d/FSGM3BKUe6QIbd4hQ76pM.png)
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  ## NOTE
17
 
18
  当前版本为一个实验版本,后续版本迭代进行中
 
13
 
14
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642f6c64f945a8a5c9ee5b5d/FSGM3BKUe6QIbd4hQ76pM.png)
15
 
16
+ ## HOW TO USE
17
+
18
+ 模型的使用方案与Qwen2-VL-2B-Instruct一致:https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct#quickstart
19
+
20
+ ```
21
+ # pip install qwen-vl-utils
22
+
23
+ from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
24
+ from qwen_vl_utils import process_vision_info
25
+
26
+ # default: Load the model on the available device(s)
27
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
28
+ "Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"
29
+ )
30
+
31
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
32
+ # model = Qwen2VLForConditionalGeneration.from_pretrained(
33
+ # "Qwen/Qwen2-VL-2B-Instruct",
34
+ # torch_dtype=torch.bfloat16,
35
+ # attn_implementation="flash_attention_2",
36
+ # device_map="auto",
37
+ # )
38
+
39
+ # default processer
40
+ processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
41
+
42
+ # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
43
+ # min_pixels = 256*28*28
44
+ # max_pixels = 1280*28*28
45
+ # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
46
+
47
+ messages = [
48
+ {
49
+ "role": "user",
50
+ "content": [
51
+ {
52
+ "type": "image",
53
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
54
+ },
55
+ {"type": "text", "text": "Describe this image."},
56
+ ],
57
+ }
58
+ ]
59
+
60
+ # Preparation for inference
61
+ text = processor.apply_chat_template(
62
+ messages, tokenize=False, add_generation_prompt=True
63
+ )
64
+ image_inputs, video_inputs = process_vision_info(messages)
65
+ inputs = processor(
66
+ text=[text],
67
+ images=image_inputs,
68
+ videos=video_inputs,
69
+ padding=True,
70
+ return_tensors="pt",
71
+ )
72
+ inputs = inputs.to("cuda")
73
+
74
+ # Inference: Generation of the output
75
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
76
+ generated_ids_trimmed = [
77
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
78
+ ]
79
+ output_text = processor.batch_decode(
80
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
81
+ )
82
+ print(output_text)
83
+
84
+ ```
85
+
86
  ## NOTE
87
 
88
  当前版本为一个实验版本,后续版本迭代进行中