Michael Brunzel
commited on
Commit
·
b4a7bbc
1
Parent(s):
671d4b6
Add custom handler file
Browse files- handler.py +70 -0
- requirements.txt +5 -0
handler.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any, Union
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
from peft import PeftModel
|
5 |
+
|
6 |
+
|
7 |
+
class EndpointHandler:
|
8 |
+
def __init__(self, path=""):
|
9 |
+
# load model and processor from path
|
10 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
path, device_map="auto", load_in_8bit=True)
|
12 |
+
self.model = PeftModel.from_pretrained(
|
13 |
+
self.model,
|
14 |
+
"MichaelAI23/falcon-rw-1b_8bit_finetuned",
|
15 |
+
torch_dtype=torch.float16,
|
16 |
+
device_map="auto"
|
17 |
+
)
|
18 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
19 |
+
self.template = {
|
20 |
+
"prompt_input": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n",
|
21 |
+
"prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n",
|
22 |
+
"response_split": "### Response:"
|
23 |
+
}
|
24 |
+
self.instruction = """Extract the name of the person, the location, the hotel name and the desired date from the following hotel request"""
|
25 |
+
|
26 |
+
def generate_prompt(
|
27 |
+
self,
|
28 |
+
template: str,
|
29 |
+
instruction: str,
|
30 |
+
input: Union[None, str] = None,
|
31 |
+
label: Union[None, str] = None,
|
32 |
+
) -> str:
|
33 |
+
# returns the full prompt from instruction and optional input
|
34 |
+
# if a label (=response, =output) is provided, it's also appended.
|
35 |
+
if input:
|
36 |
+
res = template["prompt_input"].format(
|
37 |
+
instruction=instruction, input=input
|
38 |
+
)
|
39 |
+
else:
|
40 |
+
res = template["prompt_no_input"].format(
|
41 |
+
instruction=instruction
|
42 |
+
)
|
43 |
+
if label:
|
44 |
+
res = f"{res}{label}"
|
45 |
+
return res
|
46 |
+
|
47 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
48 |
+
"""
|
49 |
+
Args:
|
50 |
+
data (:dict:):
|
51 |
+
The payload with the text prompt and generation parameters.
|
52 |
+
"""
|
53 |
+
# process input
|
54 |
+
inputs = data.pop("inputs", data)
|
55 |
+
parameters = data.pop("parameters", None)
|
56 |
+
|
57 |
+
inputs = self.generate_prompt(self.template, self.instruction, inputs)
|
58 |
+
# preprocess
|
59 |
+
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids
|
60 |
+
|
61 |
+
# pass inputs with all kwargs in data
|
62 |
+
if parameters is not None:
|
63 |
+
outputs = self.model.generate(input_ids, **parameters)
|
64 |
+
else:
|
65 |
+
outputs = self.model.generate(input_ids)
|
66 |
+
|
67 |
+
# postprocess the prediction
|
68 |
+
prediction = self.tokenizer.decode(outputs[0]) #, skip_special_tokens=True)
|
69 |
+
prediction = prediction.split("<|endoftext|>")[0]
|
70 |
+
return [{"generated_text": prediction}]
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
bitsandbytes==0.41.1
|
2 |
+
datasets==2.14.5
|
3 |
+
peft==0.5.0
|
4 |
+
sentencepiece==0.1.99
|
5 |
+
transformers==4.32.1
|