Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,102 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
library_name: peft
|
|
|
4 |
---
|
|
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
11 |
|
12 |
-
##
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
### Model Description
|
15 |
|
16 |
-
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
43 |
|
44 |
-
|
|
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
### Framework versions
|
201 |
-
|
202 |
-
- PEFT 0.11.1
|
|
|
1 |
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
datasets:
|
4 |
+
- openbmb/VisRAG-Ret-Train-Synthetic-data
|
5 |
+
- openbmb/VisRAG-Ret-Train-In-domain-data
|
6 |
+
- Metric-AI/rag_docmatix_100k
|
7 |
+
- vidore/colpali_train_set
|
8 |
+
- llamaindex/vdr-multilingual-train
|
9 |
+
- Metric-AI/tabfquad_train_set
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
- fr
|
13 |
+
- es
|
14 |
+
- it
|
15 |
+
- de
|
16 |
+
base_model:
|
17 |
+
- Metric-AI/ColQwenStella-base-2b
|
18 |
+
- Qwen/Qwen2-VL-2B
|
19 |
+
- NovaSearch/stella_en_1.5B_v5
|
20 |
+
tags:
|
21 |
+
- vidore
|
22 |
+
- multimodal_embedding
|
23 |
+
- multilingual_embedding
|
24 |
+
- Text-to-Visual Document (T→VD) retrieval
|
25 |
library_name: peft
|
26 |
+
pipeline_tag: visual-document-retrieval
|
27 |
---
|
28 |
+
# ColQwenStella-2b-multilingual: Multilingual Visual Retriever based on the combination of Qwen2 Vision and stella_en_1.5B_v5 model.
|
29 |
|
30 |
+
## Ranked #1 among models <= 2B parameters and #5 overall on the Vidore benchmark (as of February 11, 2025). The reported scores on the [Vidore Leaderboard](https://huggingface.co/spaces/vidore/vidore-leaderboard) correspond to checkpoint-1800.
|
31 |
|
32 |
+
### This is the base version trained on 4xA100 80GB with per_device_batch_size=128 for 5 epoch.
|
33 |
|
34 |
+
The ColQwenStella-2b-multilingual architecture combines the Vision component of the Qwen2 model with stella_en_1.5B_v5 as its embedding model. Training is done following the [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) recipe.
|
35 |
|
36 |
|
37 |
+
## Data
|
38 |
+
- **Synthetic data**: Selected and preprocessed from the `openbmb/VisRAG-Ret-Train-Synthetic-data` dataset.
|
39 |
+
- **In-domain VQA dataset**: Drawn from `openbmb/VisRAG-Ret-Train-In-domain-data`.
|
40 |
+
- **Docmatix dataset**: Extracted from the `Metric-AI/rag_docmatix_100k` dataset.
|
41 |
+
- **Colpali dataset**: Taken from `vidore/colpali_train_set`.
|
42 |
+
- **Multilingual dataset**: Taken from `llamaindex/vdr-multilingual-train`.
|
43 |
|
|
|
44 |
|
45 |
+
## Model Training
|
46 |
|
47 |
+
### Parameters
|
48 |
+
We train models use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685))
|
49 |
+
with `alpha=128` and `r=128` on the transformer layers from the language model, and `mlp` layers of the `vison_model.merger`
|
50 |
+
as well as the final randomly initialized projection layer, and use a `adamw` optimizer.
|
51 |
+
We train on an 4xA100 GPU setup with distributed data parallelism (via accelerate), a learning rate of 5e-4 with cosine decay with 100 warmup steps, batch size per device is 128, in `bfloat16` format.
|
52 |
|
53 |
+
## Installation
|
54 |
|
55 |
+
```bash
|
56 |
+
pip install transformers>=4.46.3
|
57 |
+
```
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
## Usage
|
60 |
|
61 |
+
```python
|
62 |
+
import torch
|
63 |
+
from PIL import Image
|
64 |
|
65 |
+
from transformers import AutoModel, AutoProcessor
|
|
|
|
|
66 |
|
67 |
+
model = AutoModel.from_pretrained(
|
68 |
+
"Metric-AI/ColQwenStella-2b-multilingual",
|
69 |
+
torch_dtype=torch.bfloat16,
|
70 |
+
device_map="cuda:0", # or "mps" if on Apple Silicon
|
71 |
+
trust_remote_code=True
|
72 |
+
).eval()
|
73 |
+
processor = AutoProcessor.from_pretrained("Metric-AI/ColQwenStella-2b-multilingual", trust_remote_code=True)
|
74 |
|
75 |
+
# Your inputs
|
76 |
+
images = [
|
77 |
+
Image.new("RGB", (32, 32), color="white"),
|
78 |
+
Image.new("RGB", (16, 16), color="black"),
|
79 |
+
]
|
80 |
+
queries = [
|
81 |
+
"Is attention really all you need?",
|
82 |
+
"What is the amount of bananas farmed in Salvador?",
|
83 |
+
]
|
84 |
|
85 |
+
# Process the inputs
|
86 |
+
batch_images = processor.process_images(images).to(model.device)
|
87 |
+
batch_queries = processor.process_queries(queries).to(model.device)
|
88 |
|
89 |
+
# Forward pass
|
90 |
+
with torch.no_grad():
|
91 |
+
image_embeddings = model(**batch_images)
|
92 |
+
query_embeddings = model(**batch_queries)
|
93 |
|
94 |
+
scores = processor.score_multi_vector(query_embeddings, image_embeddings)
|
95 |
+
```
|
96 |
|
97 |
+
## License
|
98 |
|
99 |
+
The adapters attached to the model are under MIT license.
|
100 |
|
|
|
101 |
|
102 |
+
- **Developed by:** [Metric AI Research Lab](https://metric.am/)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|