--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: MahimaTayal123/DR-Classifier results: [] datasets: - Rami/Diabetic_Retinopathy_Preprocessed_Dataset_256x256 - majorSeaweed/Diabetic_retinopathy_images --- # MahimaTayal123/DR-Classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2187 - Validation Loss: 0.2654 - Train Accuracy: 0.9420 - Epoch: 5 ## Model description This model leverages the Vision Transformer (ViT) architecture to classify retinal images for early detection of Diabetic Retinopathy (DR). The fine-tuned model improves accuracy and generalization on medical imaging datasets. ## Intended uses & limitations ### Intended Uses: - Medical diagnosis support for Diabetic Retinopathy - Research applications in ophthalmology and AI-based healthcare ### Limitations: - Requires high-quality retinal images for accurate predictions - Not a substitute for professional medical advice; should be used as an assistive tool ## Training and evaluation data The model was trained on a curated dataset containing labeled retinal images. The dataset includes various severity levels of Diabetic Retinopathy, ensuring robustness in classification. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 146985, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Epoch | Train Loss | Validation Loss | Train Accuracy | |:-----:|:---------:|:---------------:|:--------------:| | 1 | 0.4513 | 0.5234 | 0.8270 | | 2 | 0.3124 | 0.4102 | 0.8930 | | 3 | 0.2751 | 0.3856 | 0.9150 | | 4 | 0.2376 | 0.3012 | 0.9320 | | 5 | 0.2187 | 0.2654 | 0.9420 | ### Framework versions - Transformers 4.46.2 - TensorFlow 2.17.1 - Datasets 3.1.0 - Tokenizers 0.20.3