--- base_model: - meta-llama/Llama-3.3-70B-Instruct library_name: transformers --- # MISHANM/meta-Llama-3.3-70B-Instruct.gguf This model is a GGUF version of the meta-llama/Llama-3.3-70B-Instruct model, optimized for use with the `llama.cpp` framework. It is designed to run efficiently on CPUs and can be used for various natural language processing tasks. ## Model Details 1. Language: English 2. Tasks: Text generation 3. Base Model: meta-llama/Llama-3.3-70B-Instruct ## Building and Running the Model To build and run the model using `llama.cpp`, follow these steps: ### Model Steps to Download the Model: 1. Go to the "Files and Versions" section. 2. Click on the model. 3. Copy the download link. 4. Create a directory (e.g., for Linux: mkdir Llama3.3-70B). 5. Navigate to that directory (cd Llama3.3-70B). 6. Download both model parts: model_part_aa and model_part_ab model_part_ac model_part_ad (e.g., using wget with the copied link). After downloading the model parts, use the following command to combine them into a complete model: ``` cat model_part_aa model_part_ab model_part_ac model_part_ad > meta-Llama-3.3-70B-Instruct.gguf ``` ### Build llama.cpp Locally ```bash git clone https://github.com/ggerganov/llama.cpp cd llama.cpp cmake -B build cmake --build build --config Release ``` ## Run the Model Navigate to the build directory and run the model with a prompt: ``` cd llama.cpp/build/bin ``` ## Inference with llama.cpp ``` ./llama-cli -m /path/to/model/ -p "Your prompt here" -n 500 --ctx-size 8192 --temp 0.6 --seed 3407 ``` ## Citation Information ``` @misc{MISHANM/meta-Llama-3.3-70B-Instruct.gguf, author = {Mishan Maurya}, title = {Introducing MISHANM/meta-Llama-3.3-70B-Instruct.gguf GGUF Model}, year = {2025}, publisher = {Hugging Face}, journal = {Hugging Face repository}, } ```