--- library_name: transformers base_model: - meta-llama/Llama-3.2-3B-Instruct datasets: - Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered --- # MISHANM/Nepali_NLP_eng_to_nepali_Llama3.2_3B_instruction This model is fine-tuned for the Nepali language, capable of answering queries and translating text from English to Nepali. It leverages advanced natural language processing techniques to provide accurate and context-aware responses. ## Model Details This model is based on meta-llama/Llama-3.2-3B-Instruct and has been LoRA finetuned on Nepali dataset # Training Details The model is trained on approx 29K instruction samples. 1. GPUs: 2*AMD Instinct MI210 2. Training Time: 4:53:03 Hours 3. train_samples_per_second': 13.153 4. train_steps_per_second': 0.822 5. train_loss': 0.7020601840167722, 6. epoch': 10.0 ## Inference with HuggingFace ```python3 import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Set the device device = "cuda" if torch.cuda.is_available() else "cpu" # Load the fine-tuned model and tokenizer model_path = "MISHANM/Nepali_NLP_eng_to_nepali_Llama3.2_3B_instruction" model = AutoModelForCausalLM.from_pretrained(model_path) # Wrap the model with DataParallel if multiple GPUs are available if torch.cuda.device_count() > 1: print(f"Using {torch.cuda.device_count()} GPUs") model = torch.nn.DataParallel(model) # Move the model to the appropriate device model.to(device) tokenizer = AutoTokenizer.from_pretrained(model_path) # Function to generate text def generate_text(prompt, max_length=1000, temperature=0.9): # Format the prompt according to the chat template messages = [ { "role": "system", "content": "You are a nepali language expert and linguist, with same knowledge give response in nepali language.", }, {"role": "user", "content": prompt} ] # Apply the chat template formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>" # Tokenize and generate output inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device) output = model.module.generate( # Use model.module for DataParallel **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True ) return tokenizer.decode(output[0], skip_special_tokens=True) # Example usage prompt = """Give me a story : The Coming of the King, a legend about King Arthur .""" translated_text = generate_text(prompt) print(translated_text) ``` ## Citation Information ``` @misc{MISHANM/Nepali_NLP_eng_to_nepali_Llama3.2_3B_instruction, author = {Mishan Maurya}, title = {Introducing Fine Tuned LLM for Nepali Language}, year = {2024}, publisher = {Hugging Face}, journal = {Hugging Face repository}, } ```