Updated Model
Browse files- 1_Pooling/config.json +3 -1
- README.md +3 -3
- config_sentence_transformers.json +1 -1
- eval/similarity_evaluation_results.csv +1 -1
- pytorch_model.bin +1 -1
1_Pooling/config.json
CHANGED
@@ -3,5 +3,7 @@
|
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false
|
|
|
|
|
7 |
}
|
|
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
}
|
README.md
CHANGED
@@ -8,7 +8,7 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
@@ -85,7 +85,7 @@ The model was trained with the parameters:
|
|
85 |
|
86 |
**DataLoader**:
|
87 |
|
88 |
-
`torch.utils.data.dataloader.DataLoader` of length
|
89 |
```
|
90 |
{'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
```
|
@@ -120,7 +120,7 @@ Parameters of the fit()-Method:
|
|
120 |
```
|
121 |
SentenceTransformer(
|
122 |
(0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: BertModel
|
123 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
124 |
)
|
125 |
```
|
126 |
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
# LazarusNLP/simcse-indobert-base
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
|
|
85 |
|
86 |
**DataLoader**:
|
87 |
|
88 |
+
`torch.utils.data.dataloader.DataLoader` of length 7813 with parameters:
|
89 |
```
|
90 |
{'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
```
|
|
|
120 |
```
|
121 |
SentenceTransformer(
|
122 |
(0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: BertModel
|
123 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
124 |
)
|
125 |
```
|
126 |
|
config_sentence_transformers.json
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "2.2.2",
|
4 |
"transformers": "4.29.2",
|
5 |
-
"pytorch": "2.0.1+
|
6 |
}
|
7 |
}
|
|
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "2.2.2",
|
4 |
"transformers": "4.29.2",
|
5 |
+
"pytorch": "2.0.1+cu117"
|
6 |
}
|
7 |
}
|
eval/similarity_evaluation_results.csv
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
-
0,-1,0.
|
|
|
1 |
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,-1,0.6891775818786484,0.6823645991985652,0.7090120719350553,0.7012689286635643,0.7086053381965113,0.7013742069737221,0.543402261253142,0.5333750931314221
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 497836589
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b45e3d401265065fd380772e6ca15aee0203b37d84b9bb25ce507c16bf4105e7
|
3 |
size 497836589
|