--- library_name: transformers license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: CS221-deberta-base-finetuned-semeval-aug results: [] --- # CS221-deberta-base-finetuned-semeval-aug This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3475 - F1: 0.8781 - Roc Auc: 0.9070 - Accuracy: 0.7651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4197 | 1.0 | 277 | 0.3731 | 0.6624 | 0.7504 | 0.4435 | | 0.2694 | 2.0 | 554 | 0.3172 | 0.7734 | 0.8309 | 0.5411 | | 0.1796 | 3.0 | 831 | 0.2815 | 0.7769 | 0.8256 | 0.5890 | | 0.1281 | 4.0 | 1108 | 0.2802 | 0.8120 | 0.8543 | 0.6305 | | 0.0754 | 5.0 | 1385 | 0.2998 | 0.8177 | 0.8565 | 0.6495 | | 0.067 | 6.0 | 1662 | 0.2926 | 0.8367 | 0.8755 | 0.6838 | | 0.0303 | 7.0 | 1939 | 0.2977 | 0.8409 | 0.8750 | 0.7010 | | 0.009 | 8.0 | 2216 | 0.3252 | 0.8474 | 0.8777 | 0.7091 | | 0.0114 | 9.0 | 2493 | 0.3181 | 0.8539 | 0.8899 | 0.7281 | | 0.006 | 10.0 | 2770 | 0.3390 | 0.8581 | 0.8890 | 0.7344 | | 0.0023 | 11.0 | 3047 | 0.3407 | 0.8646 | 0.8934 | 0.7353 | | 0.0022 | 12.0 | 3324 | 0.3453 | 0.8674 | 0.8991 | 0.7525 | | 0.0031 | 13.0 | 3601 | 0.3488 | 0.8708 | 0.9021 | 0.7507 | | 0.0013 | 14.0 | 3878 | 0.3440 | 0.8736 | 0.9044 | 0.7579 | | 0.0009 | 15.0 | 4155 | 0.3475 | 0.8781 | 0.9070 | 0.7651 | | 0.0026 | 16.0 | 4432 | 0.3455 | 0.8767 | 0.9057 | 0.7651 | | 0.0008 | 17.0 | 4709 | 0.3504 | 0.8755 | 0.9053 | 0.7615 | | 0.0009 | 18.0 | 4986 | 0.3549 | 0.8742 | 0.9043 | 0.7588 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0