File size: 1,939 Bytes
a294ac9 b0b31d1 a294ac9 752dc4d a294ac9 b0b31d1 a294ac9 752dc4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: testing222_mt5-ha2zh-translation
results: []
pipeline_tag: translation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# testing222_mt5-ha2zh-translation
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 15.2208
- Bleu: 0.0
- Ter: 112.1622
- Chrf: 0.0592
- Rougel: 0.0
- Meteor: 0.0
- Bertscore F1: 0.4861
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Ter | Chrf | Rougel | Meteor | Bertscore F1 |
|:-------------:|:-----:|:----:|:---------------:|:----:|:--------:|:------:|:------:|:------:|:------------:|
| 24.1484 | 1.0 | 63 | 17.4027 | 0.0 | 108.7838 | 0.0592 | 0.0 | 0.0 | 0.4856 |
| 24.1484 | 2.0 | 126 | 15.8128 | 0.0 | 109.7973 | 0.0592 | 0.0 | 0.0 | 0.4859 |
| 24.1484 | 3.0 | 189 | 15.2208 | 0.0 | 112.1622 | 0.0592 | 0.0 | 0.0 | 0.4861 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0 |