Koleshjr commited on
Commit
ef96241
·
1 Parent(s): 33eb45e

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +104 -0
readme_template.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: cc-by-4.0
5
+ library_name: nemo
6
+ datasets:
7
+ - librispeech_asr
8
+ - mozilla-foundation/common_voice_custom_40k_10k
9
+ - Multilingual-LibriSpeech-(>40-hours)
10
+ thumbnail: null
11
+ tags:
12
+ - automatic-speech-recognition
13
+ - speech
14
+ - audio
15
+ - CTC
16
+ - Conformer
17
+ - Transformer
18
+ - NeMo
19
+ - pytorch
20
+ model-index:
21
+ - name: Kolesh_nemo_23k_5k_1e_3_20epochs.nemo
22
+ results: []
23
+
24
+ ---
25
+
26
+
27
+ ## Model Overview
28
+
29
+ <DESCRIBE IN ONE LINE THE MODEL AND ITS USE>
30
+
31
+ ## NVIDIA NeMo: Training
32
+
33
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
34
+ ```
35
+ pip install nemo_toolkit['all']
36
+ ```
37
+
38
+ ## How to Use this Model
39
+
40
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
41
+
42
+ ### Automatically instantiate the model
43
+
44
+ ```python
45
+ import nemo.collections.asr as nemo_asr
46
+ asr_model = nemo_asr.models.ASRModel.from_pretrained("Koleshjr/Kolesh_nemo_23k_5k_1e_3_20epochs.nemo")
47
+ ```
48
+
49
+ ### Transcribing using Python
50
+ First, let's get a sample
51
+ ```
52
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
53
+ ```
54
+ Then simply do:
55
+ ```
56
+ asr_model.transcribe(['2086-149220-0033.wav'])
57
+ ```
58
+
59
+ ### Transcribing many audio files
60
+
61
+ ```shell
62
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="Koleshjr/Kolesh_nemo_23k_5k_1e_3_20epochs.nemo" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
63
+ ```
64
+
65
+ ### Input
66
+
67
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
68
+
69
+ ### Output
70
+
71
+ This model provides transcribed speech as a string for a given audio sample.
72
+
73
+ ## Model Architecture
74
+
75
+ <ADD SOME INFORMATION ABOUT THE ARCHITECTURE>
76
+
77
+ ## Training
78
+
79
+ <ADD INFORMATION ABOUT HOW THE MODEL WAS TRAINED - HOW MANY EPOCHS, AMOUNT OF COMPUTE ETC>
80
+
81
+ ### Datasets
82
+
83
+ <LIST THE NAME AND SPLITS OF DATASETS USED TO TRAIN THIS MODEL (ALONG WITH LANGUAGE AND ANY ADDITIONAL INFORMATION)>
84
+
85
+ ## Performance
86
+
87
+ <LIST THE SCORES OF THE MODEL -
88
+ OR
89
+ USE THE Hugging Face Evaluate LiBRARY TO UPLOAD METRICS>
90
+
91
+ ## Limitations
92
+
93
+ <DECLARE ANY POTENTIAL LIMITATIONS OF THE MODEL>
94
+
95
+ Eg:
96
+ Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
97
+
98
+
99
+ ## References
100
+
101
+ <ADD ANY REFERENCES HERE AS NEEDED>
102
+
103
+ [1] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
104
+