--- base_model: - google/flan-t5-large --- # Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model_path = "KameronB/sitcc-t5-large-v3" # Load the model model = T5ForConditionalGeneration.from_pretrained(model_path, use_safetensors=True) # Load the tokenizer (if applicable) tokenizer = T5Tokenizer.from_pretrained(model_path) def summarize_ticket(ticket_text): # Tokenize the input text input_ids = tokenizer.encode("Summarize: " + ticket_text, return_tensors="pt") # Generate the summary summary_ids = model.generate(input_ids, min_length=10, max_length=100) # Decode and return the summary summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary ```