dereklck commited on
Commit
4c9f4a4
·
verified ·
1 Parent(s): a396a1c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +205 -0
README.md ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/Llama-3.2-1B-Instruct-bnb-4bit
3
+ tags:
4
+ - text-generation-inference
5
+ - transformers
6
+ - unsloth
7
+ - llama
8
+ - gguf
9
+ - ollama
10
+ license: apache-2.0
11
+ language:
12
+ - en
13
+ ---
14
+
15
+ # kubectl Operator Model
16
+
17
+ - **Developed by:** dereklck
18
+ - **License:** Apache-2.0
19
+ - **Fine-tuned from model:** [unsloth/Llama-3.2-1B-Instruct-bnb-4bit](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct-bnb-4bit)
20
+ - **Model type:** GGUF (compatible with Ollama)
21
+ - **Language:** English
22
+
23
+ This Llama-based model was fine-tuned to generate `kubectl` commands based on user descriptions. It was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's TRL library.
24
+
25
+ ---
26
+
27
+ ## Model Details
28
+
29
+ ### Purpose
30
+
31
+ The model assists users by:
32
+
33
+ - Generating accurate `kubectl` commands based on natural language descriptions.
34
+ - Providing brief explanations about Kubernetes for general queries.
35
+ - Requesting additional information if the instruction is incomplete or ambiguous.
36
+
37
+ ### Intended Users
38
+
39
+ - Kubernetes administrators
40
+ - DevOps engineers
41
+ - Developers working with Kubernetes clusters
42
+
43
+ ### Training Process
44
+
45
+ - **Base Model:** Unsloth's Llama-3.2-1B-Instruct-bnb-4bit
46
+ - **Fine-tuning:** Leveraged the Unsloth framework and Hugging Face's TRL library for efficient training.
47
+ - **Training Data:** Customized datasets focused on Kubernetes operations and `kubectl` command usage.
48
+
49
+ ### Performance
50
+
51
+ While the model aims to generate accurate commands, there might be occasional hallucinations or inaccuracies. Users should:
52
+
53
+ - Validate the generated commands before execution.
54
+ - Use the model as a guide rather than an absolute source.
55
+
56
+ ---
57
+
58
+ ## Usage
59
+
60
+ ### Prompt Template
61
+
62
+ The model uses the following prompt template to generate responses:
63
+
64
+ ```plaintext
65
+ You are an AI assistant that generates kubectl commands based on the user's description. If the instruction is incomplete or ambiguous, politely ask for more information. For general questions about Kubernetes, provide a brief explanation.
66
+
67
+ ### Instruction:
68
+ <Your instruction here>
69
+
70
+ ### Response:
71
+ <Assistant's response>
72
+ </s>
73
+ ```
74
+
75
+ ### Parameters
76
+
77
+ - **Temperature:** `0.3` (controls the randomness; lower values make outputs more deterministic)
78
+ - **Stop Token:** `</s>` (indicates the end of the assistant's response)
79
+
80
+ ---
81
+
82
+ ### Examples
83
+
84
+ #### Example 1: Generating a Command
85
+
86
+ **Instruction:**
87
+
88
+ ```
89
+ List all pods in the kube-system namespace.
90
+ ```
91
+
92
+ **Response:**
93
+
94
+ ```
95
+ kubectl get pods -n kube-system
96
+ </s>
97
+ ```
98
+
99
+ ---
100
+
101
+ #### Example 2: Handling Ambiguity
102
+
103
+ **Instruction:**
104
+
105
+ ```
106
+ Restart the deployment.
107
+ ```
108
+
109
+ **Response:**
110
+
111
+ ```
112
+ Could you please specify the name of the deployment you want to restart?
113
+ </s>
114
+ ```
115
+
116
+ ---
117
+
118
+ #### Example 3: Providing Explanations
119
+
120
+ **Instruction:**
121
+
122
+ ```
123
+ What is a Kubernetes service?
124
+ ```
125
+
126
+ **Response:**
127
+
128
+ ```
129
+ A Kubernetes Service is an abstraction that defines a logical set of Pods and a policy by which to access them, often used to expose applications running on a set of Pods to other services or end-users.
130
+ </s>
131
+ ```
132
+
133
+ ---
134
+
135
+ ## Deployment with Ollama
136
+
137
+ ### Prerequisites
138
+
139
+ - Install [Ollama](https://github.com/jmorganca/ollama) on your system.
140
+ - Ensure you have the GGUF model file (`kubectl_operator.Q8_0.gguf`).
141
+
142
+ ### Steps
143
+
144
+ 1. **Create the Modelfile**
145
+
146
+ Save the following content as a file named `modelfile`:
147
+
148
+ ```plaintext
149
+ FROM kubectl_operator.Q8_0.gguf
150
+
151
+ SYSTEM "You are an AI assistant that generates kubectl commands based on the user's description. If the instruction is incomplete or ambiguous, politely ask for more information. For general questions about Kubernetes, provide a brief explanation."
152
+
153
+ PARAMETER temperature 0.3
154
+ PARAMETER stop </s>
155
+
156
+ TEMPLATE """
157
+ You are an AI assistant that generates kubectl commands based on the user's description. If the instruction is incomplete or ambiguous, politely ask for more information. For general questions about Kubernetes, provide a brief explanation.
158
+
159
+ ### Instruction:
160
+ {{ .Prompt }}
161
+
162
+ ### Response:
163
+ {{ .Response }}
164
+ </s>
165
+ """
166
+ ```
167
+
168
+ 2. **Create the Model with Ollama**
169
+
170
+ Open your terminal and run the following command to create the model:
171
+
172
+ ```bash
173
+ ollama create kubectl_operator -f modelfile
174
+ ```
175
+
176
+ This command tells Ollama to create a new model named `kubectl_operator` using the configuration specified in `modelfile`.
177
+
178
+ 3. **Run the Model**
179
+
180
+ Start interacting with your model:
181
+
182
+ ```bash
183
+ ollama run kubectl_operator
184
+ ```
185
+
186
+ This will initiate the model and prompt you for input based on the template provided.
187
+
188
+ ---
189
+
190
+ ## Limitations and Considerations
191
+
192
+ - **Accuracy:** The model may occasionally produce incorrect or suboptimal commands. Always review the output before executing.
193
+ - **Hallucinations:** In rare cases, the model might generate irrelevant information. If the response seems off-topic, consider rephrasing your instruction.
194
+ - **Security:** Be cautious when executing generated commands, especially in production environments.
195
+
196
+ ---
197
+
198
+ ## Feedback and Contributions
199
+
200
+ We welcome any comments or participation to improve the model and dataset. If you encounter issues or have suggestions for improvement:
201
+
202
+ - **GitHub:** [Unsloth Repository](https://github.com/unslothai/unsloth)
203
+ - **Contact:** Reach out to the developer, **dereklck**, for further assistance.
204
+
205
+ ---