--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: balanced-augmented-distilbert-base-gest-pred-seqeval-partialmatch-2 results: [] datasets: - Jsevisal/balanced_augmented_dataset_2 pipeline_tag: token-classification --- # balanced-augmented-distilbert-base-gest-pred-seqeval-partialmatch-2 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3958 - Precision: 0.9273 - Recall: 0.9067 - F1: 0.9116 - Accuracy: 0.9005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 3.1391 | 1.0 | 52 | 2.5842 | 0.1830 | 0.1356 | 0.1249 | 0.3087 | | 2.1708 | 2.0 | 104 | 1.7976 | 0.3943 | 0.3943 | 0.3622 | 0.5473 | | 1.5993 | 3.0 | 156 | 1.3522 | 0.5329 | 0.4921 | 0.4697 | 0.6482 | | 1.2237 | 4.0 | 208 | 1.1070 | 0.6701 | 0.5833 | 0.5820 | 0.6923 | | 0.9516 | 5.0 | 260 | 0.9920 | 0.7506 | 0.6840 | 0.6820 | 0.7501 | | 0.7364 | 6.0 | 312 | 0.7888 | 0.8171 | 0.7327 | 0.7350 | 0.7815 | | 0.5816 | 7.0 | 364 | 0.6753 | 0.8510 | 0.7845 | 0.7961 | 0.8256 | | 0.4507 | 8.0 | 416 | 0.5905 | 0.8807 | 0.8242 | 0.8400 | 0.8550 | | 0.3589 | 9.0 | 468 | 0.5305 | 0.9021 | 0.8667 | 0.8746 | 0.8702 | | 0.2875 | 10.0 | 520 | 0.5081 | 0.9176 | 0.8788 | 0.8911 | 0.8834 | | 0.2268 | 11.0 | 572 | 0.4599 | 0.9133 | 0.8879 | 0.8939 | 0.8863 | | 0.1875 | 12.0 | 624 | 0.4347 | 0.9224 | 0.8946 | 0.9025 | 0.8942 | | 0.1608 | 13.0 | 676 | 0.4497 | 0.9186 | 0.8846 | 0.8956 | 0.8873 | | 0.1356 | 14.0 | 728 | 0.4271 | 0.9242 | 0.8951 | 0.9038 | 0.8932 | | 0.1197 | 15.0 | 780 | 0.3958 | 0.9273 | 0.9067 | 0.9116 | 0.9005 | | 0.1015 | 16.0 | 832 | 0.4060 | 0.9285 | 0.9013 | 0.9095 | 0.8991 | | 0.0896 | 17.0 | 884 | 0.4023 | 0.9300 | 0.9114 | 0.9157 | 0.9040 | | 0.0847 | 18.0 | 936 | 0.4041 | 0.9296 | 0.9077 | 0.9133 | 0.9005 | | 0.0811 | 19.0 | 988 | 0.4069 | 0.9291 | 0.9089 | 0.9133 | 0.9005 | | 0.0752 | 20.0 | 1040 | 0.4086 | 0.9286 | 0.9075 | 0.9129 | 0.8996 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2