Jrinky commited on
Commit
0e5b999
·
verified ·
1 Parent(s): dda7e7a

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,487 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:69500
8
+ - loss:Infonce
9
+ base_model: Snowflake/snowflake-arctic-embed-l-v2.0
10
+ widget:
11
+ - source_sentence: What aspect of human relationship to nature is omitted from the
12
+ text
13
+ sentences:
14
+ - 'There are a few good ones, though. Here are the best WWE apps and WWE games for
15
+ Android! The first five are the best games...
16
+
17
+ Go Android Apps (blog)
18
+
19
+ The Best Themes for Android Free Download: Hi friend we are again back with our
20
+ new top ten best free themes for android list. This article is especially dedicated
21
+ for those persons who want to make their smartphone...
22
+
23
+ Paragon Software has created an app for Android that allows your device to natively
24
+ read partitions in file systems that Android normally can''t handle, such as Microsoft''s
25
+ NTFS, allowing immediate and easy use of... While the Sentio Desktop app can be
26
+ used on its own, it was primarily meant to complement Sentio''s Superbook, a crowdfunded
27
+ laptop shell for Android smartphones and tablets that''s just entering production
28
+ after...
29
+
30
+ ... phone then GBWhatsapp is the app for you. GBWhatsapp is basically similar
31
+ to Whatsapp+ in terms of features. The newest available version right now is GBWhatsapp
32
+ 6.40 APK for Android devices.'
33
+ - A true entertainer. date city state venue 11/23/2012 West Palm Beach FL Kravis
34
+ Center 11/24/2012 Sarasota FL Van Wezel Performing Arts Hall 11/25/2012 Clearwater
35
+ FL Capitol Theatre 11/29/2012 Durham NC Durham Performing Arts Center 12/1/2012
36
+ Atlantic City NJ Trump Taj Mahal 12/2/2012 Staten Island NY St. George Theatre
37
+ 12/4/2012 Bethlehem PA Musikfest Cafe 12/5/2012 Verona NY Turning Stone Casino
38
+ 12/6/2012 Stamford CT Palace Theatre Stamford 12/8/2012 Shippensburg PA Luhrs
39
+ Center 12/9/2012 Boston MA Wilbur Theatre 12/11/2012 Greensburg PA The Palace
40
+ Theatre 12/12/2012 Easton MD Avalon Theatre 12/15/2012 Saint Charles IL Arcada
41
+ Theater 12/16/2012 Milwaukee WI Potawatomi Bingo Casino 12/18/2012 Beaver Creek
42
+ CO Vilar Performing Arts Center 12/20/2012 Chandler AZ Ovations Live!
43
+ - The reader will gain a better understanding of the direction nature and culture
44
+ is heading today by learning how connections were made in the past. It omits that
45
+ which Raymond Williams called "a working landscape" -- the most intimate human
46
+ relationship to nature which is people who live and work on it.
47
+ - source_sentence: Why is it recommended to contact a wedding agency or consultant
48
+ before making a decision
49
+ sentences:
50
+ - Perhaps owing to this humiliation I resigned as Chief Winery Warlord, and took
51
+ a position elsewhere. Following my resignation, we rebooked our date with axe
52
+ throwing destiny, and converted the night from a team building exercise to a majestic
53
+ send off in honour of my 10ish glorious years at Coffin Ridge. We arrived in our
54
+ most impeccable vestments.
55
+ - Therefore, those private companies increased their own rate of cash burn since
56
+ the financial markets were willing to fund money-losing enterprises without hesitation.
57
+ Out of the 100 largest North American-based technology companies, 16 have lost
58
+ money over the past year.
59
+ - Yet , it is best to contact a wedding agency or consultant before you make your
60
+ concluding decision. This will make certain you are dealing with a respectable
61
+ company.
62
+ - source_sentence: What is the Electronic Music Education and Preservation Project
63
+ (EMEAPP) and what are its functions
64
+ sentences:
65
+ - The Electronic Music Education and Preservation Project (EMEAPP) is the steward
66
+ of a privately held world-class curated collection of rare vintage electronic
67
+ instruments and stage-used gear. This includes effects units, amps, organs, synthesizers,
68
+ electro-mechanical instruments, guitars, prototypes, vintage audio/video media
69
+ and analog studio gear. In addition, EMEAPP itself is cultivating its own humble
70
+ collection. It is our charge to cultivate and reap excellent knowledge from these
71
+ unique resources and return it to our members and the world. We do this as a learning
72
+ center, through research projects, creative endeavors, media programming and tours,
73
+ enlightening many people along the way. There is so much to be harvested from
74
+ history; EMEAPP has a key to the vault. EMEAPP is a private museum, a critical
75
+ learning center and a multi-media production studio nicely packed into a brick-and-mortar
76
+ facility outside of Philadelphia, Pennsylvania. EMEAPP is a 501(c)(3) non-profit
77
+ organization.
78
+ - You got a problem? Yo, she'll splode it.
79
+ - I love sex; I think sex is completely absurdly demonized in our culture. But in
80
+ the end, however much sex you want to have, with however many people in how many
81
+ ways, to be loved and to love is what human beings really want.
82
+ - source_sentence: What year did the Duchess die and where did it happen
83
+ sentences:
84
+ - 'League One
85
+
86
+
87
+ League table
88
+
89
+
90
+ Results summary
91
+
92
+
93
+ Results by matchday
94
+
95
+
96
+ Matches
97
+
98
+ On 21 June 2018, the League One fixtures for the forthcoming season were announced.
99
+ FA Cup
100
+
101
+
102
+ The first round draw was made live on BBC by Dennis Wise and Dion Dublin on 22
103
+ October.'
104
+ - "The Duchess was widowed in 2007 and died in London in 2011. Issue \n\nThe Duke\
105
+ \ and Duchess of Buccleuch and Queensberry had four children:\nRichard Scott,\
106
+ \ 10th Duke of Buccleuch (b. 1954), married Lady Elizabeth Kerr, daughter of the\
107
+ \ Marquess of Lothian, and has issue two sons and two daughters. Lord John (born\
108
+ \ 9 August 1957), married Berrin Torolsan, and lives in Istanbul, Turkey. Lady\
109
+ \ Charlotte-Anne (born 9 January 1966), married Count Bernard de Castellane in\
110
+ \ 1991, and has issue two sons and a daughter. Lord Damian (born 8 October 1969),\
111
+ \ married Elizabeth Powis, and has issue. External links\nJane in her wedding\
112
+ \ dress \nMovie clip of Jane's wedding\n\nReferences \n\n1929 births\n2011 deaths\n\
113
+ British duchesses by marriage\nJane\nScottish female models\nBritish cookbook\
114
+ \ writers\nWomen cookbook writers"
115
+ - Is this common, do other people with epilepsy have dangerously low appetites?
116
+ So we left there and stopped and got her a bite to eat.
117
+ - source_sentence: Why is it important to keep moving over the summer
118
+ sentences:
119
+ - It's important to keep moving over the summer!
120
+ - '2008. CHENG HF, LEE YM, Chu CH, Leung WK & Mok TMY. - Journal Editor (Hong Kong
121
+ Medical Journal) 2008
122
+
123
+ - Editor-in-Chief (Hong Kong Dental Journal) 2007
124
+
125
+ - Editor-in-Chief (Hong Kong Dental Journal) 2006
126
+
127
+ - Deputy Editor (Hong Kong Dental Journal) 2004'
128
+ - Both demand collective action and shared resources. While one is distinctly egalitarian
129
+ and the other hierarchical in nature, both speak of sublimating private goals
130
+ for the achievement of larger, shared ones.
131
+ pipeline_tag: sentence-similarity
132
+ library_name: sentence-transformers
133
+ ---
134
+
135
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
136
+
137
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
138
+
139
+ ## Model Details
140
+
141
+ ### Model Description
142
+ - **Model Type:** Sentence Transformer
143
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0) <!-- at revision 7f311bb640ad3babc0a4e3a8873240dcba44c9d2 -->
144
+ - **Maximum Sequence Length:** 1024 tokens
145
+ - **Output Dimensionality:** 1024 tokens
146
+ - **Similarity Function:** Cosine Similarity
147
+ <!-- - **Training Dataset:** Unknown -->
148
+ <!-- - **Language:** Unknown -->
149
+ <!-- - **License:** Unknown -->
150
+
151
+ ### Model Sources
152
+
153
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
154
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
155
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
156
+
157
+ ### Full Model Architecture
158
+
159
+ ```
160
+ SentenceTransformer(
161
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
162
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
163
+ (2): Normalize()
164
+ )
165
+ ```
166
+
167
+ ## Usage
168
+
169
+ ### Direct Usage (Sentence Transformers)
170
+
171
+ First install the Sentence Transformers library:
172
+
173
+ ```bash
174
+ pip install -U sentence-transformers
175
+ ```
176
+
177
+ Then you can load this model and run inference.
178
+ ```python
179
+ from sentence_transformers import SentenceTransformer
180
+
181
+ # Download from the 🤗 Hub
182
+ model = SentenceTransformer("Jrinky/snowflake")
183
+ # Run inference
184
+ sentences = [
185
+ 'Why is it important to keep moving over the summer',
186
+ "It's important to keep moving over the summer!",
187
+ '2008. CHENG HF, LEE YM, Chu CH, Leung WK & Mok TMY. - Journal Editor (Hong Kong Medical Journal) 2008\n- Editor-in-Chief (Hong Kong Dental Journal) 2007\n- Editor-in-Chief (Hong Kong Dental Journal) 2006\n- Deputy Editor (Hong Kong Dental Journal) 2004',
188
+ ]
189
+ embeddings = model.encode(sentences)
190
+ print(embeddings.shape)
191
+ # [3, 1024]
192
+
193
+ # Get the similarity scores for the embeddings
194
+ similarities = model.similarity(embeddings, embeddings)
195
+ print(similarities.shape)
196
+ # [3, 3]
197
+ ```
198
+
199
+ <!--
200
+ ### Direct Usage (Transformers)
201
+
202
+ <details><summary>Click to see the direct usage in Transformers</summary>
203
+
204
+ </details>
205
+ -->
206
+
207
+ <!--
208
+ ### Downstream Usage (Sentence Transformers)
209
+
210
+ You can finetune this model on your own dataset.
211
+
212
+ <details><summary>Click to expand</summary>
213
+
214
+ </details>
215
+ -->
216
+
217
+ <!--
218
+ ### Out-of-Scope Use
219
+
220
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
221
+ -->
222
+
223
+ <!--
224
+ ## Bias, Risks and Limitations
225
+
226
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
227
+ -->
228
+
229
+ <!--
230
+ ### Recommendations
231
+
232
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
233
+ -->
234
+
235
+ ## Training Details
236
+
237
+ ### Training Dataset
238
+
239
+ #### Unnamed Dataset
240
+
241
+
242
+ * Size: 69,500 training samples
243
+ * Columns: <code>anchor</code> and <code>positive</code>
244
+ * Approximate statistics based on the first 1000 samples:
245
+ | | anchor | positive |
246
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
247
+ | type | string | string |
248
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.47 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 113.33 tokens</li><li>max: 1024 tokens</li></ul> |
249
+ * Samples:
250
+ | anchor | positive |
251
+ |:-----------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
252
+ | <code>What might have been unnecessary if better emergency plans had been implemented</code> | <code>If better emergency plans had been in place, maybe chemical dipersants wouldn't be needed. And on and on.</code> |
253
+ | <code>What was the year of publication for the 3rd Edition of 'Regular Polytopes' by H.S.M. Coxeter</code> | <code>Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973 <br> Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, <br> (Paper 22) H.S.M.</code> |
254
+ | <code>Who is the author of the GURPS Shapeshifters supplement</code> | <code>GURPS Shapeshifters () is a supplement by Robert M. Schroeck for the GURPS role-playing game system, third edition.</code> |
255
+ * Loss: <code>selfloss.Infonce</code> with these parameters:
256
+ ```json
257
+ {
258
+ "scale": 20.0,
259
+ "similarity_fct": "cos_sim"
260
+ }
261
+ ```
262
+
263
+ ### Evaluation Dataset
264
+
265
+ #### Unnamed Dataset
266
+
267
+
268
+ * Size: 17,376 evaluation samples
269
+ * Columns: <code>anchor</code> and <code>positive</code>
270
+ * Approximate statistics based on the first 1000 samples:
271
+ | | anchor | positive |
272
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
273
+ | type | string | string |
274
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.87 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 115.36 tokens</li><li>max: 1024 tokens</li></ul> |
275
+ * Samples:
276
+ | anchor | positive |
277
+ |:---------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
278
+ | <code>What impressive achievements did the Warriors accomplish during their last season in Division III</code> | <code>The Warriors were among the most lethal offensive teams in Division III this past year, posting a team batting average of .344 and averaging nearly seven runs per game, smacking 29 home runs, and collecting nearly 600 total bases. They shared the Little East Conference regular-season championship and later knocked off the top seed in the NCAA regional tournament (Montclair State) en route to their winningest season in 14 years.</code> |
279
+ | <code>How many bars had nectar and capped honey on them</code> | <code>Eight of the bars had nectar and capped honey on them. There are eighteen bars with brood in some form on them and a mix of workers and drones.</code> |
280
+ | <code>What idea is being requested regarding the 'triangle'</code> | <code>Next up...the "triangle". Please, seriously, if anyone could float me an idea, I would really appreciate it.</code> |
281
+ * Loss: <code>selfloss.Infonce</code> with these parameters:
282
+ ```json
283
+ {
284
+ "scale": 20.0,
285
+ "similarity_fct": "cos_sim"
286
+ }
287
+ ```
288
+
289
+ ### Training Hyperparameters
290
+ #### Non-Default Hyperparameters
291
+
292
+ - `eval_strategy`: steps
293
+ - `per_device_train_batch_size`: 3
294
+ - `per_device_eval_batch_size`: 3
295
+ - `learning_rate`: 5e-06
296
+ - `num_train_epochs`: 5
297
+ - `warmup_ratio`: 0.1
298
+ - `fp16`: True
299
+ - `batch_sampler`: no_duplicates
300
+
301
+ #### All Hyperparameters
302
+ <details><summary>Click to expand</summary>
303
+
304
+ - `overwrite_output_dir`: False
305
+ - `do_predict`: False
306
+ - `eval_strategy`: steps
307
+ - `prediction_loss_only`: True
308
+ - `per_device_train_batch_size`: 3
309
+ - `per_device_eval_batch_size`: 3
310
+ - `per_gpu_train_batch_size`: None
311
+ - `per_gpu_eval_batch_size`: None
312
+ - `gradient_accumulation_steps`: 1
313
+ - `eval_accumulation_steps`: None
314
+ - `torch_empty_cache_steps`: None
315
+ - `learning_rate`: 5e-06
316
+ - `weight_decay`: 0.0
317
+ - `adam_beta1`: 0.9
318
+ - `adam_beta2`: 0.999
319
+ - `adam_epsilon`: 1e-08
320
+ - `max_grad_norm`: 1.0
321
+ - `num_train_epochs`: 5
322
+ - `max_steps`: -1
323
+ - `lr_scheduler_type`: linear
324
+ - `lr_scheduler_kwargs`: {}
325
+ - `warmup_ratio`: 0.1
326
+ - `warmup_steps`: 0
327
+ - `log_level`: passive
328
+ - `log_level_replica`: warning
329
+ - `log_on_each_node`: True
330
+ - `logging_nan_inf_filter`: True
331
+ - `save_safetensors`: True
332
+ - `save_on_each_node`: False
333
+ - `save_only_model`: False
334
+ - `restore_callback_states_from_checkpoint`: False
335
+ - `no_cuda`: False
336
+ - `use_cpu`: False
337
+ - `use_mps_device`: False
338
+ - `seed`: 42
339
+ - `data_seed`: None
340
+ - `jit_mode_eval`: False
341
+ - `use_ipex`: False
342
+ - `bf16`: False
343
+ - `fp16`: True
344
+ - `fp16_opt_level`: O1
345
+ - `half_precision_backend`: auto
346
+ - `bf16_full_eval`: False
347
+ - `fp16_full_eval`: False
348
+ - `tf32`: None
349
+ - `local_rank`: 0
350
+ - `ddp_backend`: None
351
+ - `tpu_num_cores`: None
352
+ - `tpu_metrics_debug`: False
353
+ - `debug`: []
354
+ - `dataloader_drop_last`: True
355
+ - `dataloader_num_workers`: 0
356
+ - `dataloader_prefetch_factor`: None
357
+ - `past_index`: -1
358
+ - `disable_tqdm`: False
359
+ - `remove_unused_columns`: True
360
+ - `label_names`: None
361
+ - `load_best_model_at_end`: False
362
+ - `ignore_data_skip`: False
363
+ - `fsdp`: []
364
+ - `fsdp_min_num_params`: 0
365
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
366
+ - `fsdp_transformer_layer_cls_to_wrap`: None
367
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
368
+ - `deepspeed`: None
369
+ - `label_smoothing_factor`: 0.0
370
+ - `optim`: adamw_torch
371
+ - `optim_args`: None
372
+ - `adafactor`: False
373
+ - `group_by_length`: False
374
+ - `length_column_name`: length
375
+ - `ddp_find_unused_parameters`: None
376
+ - `ddp_bucket_cap_mb`: None
377
+ - `ddp_broadcast_buffers`: False
378
+ - `dataloader_pin_memory`: True
379
+ - `dataloader_persistent_workers`: False
380
+ - `skip_memory_metrics`: True
381
+ - `use_legacy_prediction_loop`: False
382
+ - `push_to_hub`: False
383
+ - `resume_from_checkpoint`: None
384
+ - `hub_model_id`: None
385
+ - `hub_strategy`: every_save
386
+ - `hub_private_repo`: False
387
+ - `hub_always_push`: False
388
+ - `gradient_checkpointing`: False
389
+ - `gradient_checkpointing_kwargs`: None
390
+ - `include_inputs_for_metrics`: False
391
+ - `eval_do_concat_batches`: True
392
+ - `fp16_backend`: auto
393
+ - `push_to_hub_model_id`: None
394
+ - `push_to_hub_organization`: None
395
+ - `mp_parameters`:
396
+ - `auto_find_batch_size`: False
397
+ - `full_determinism`: False
398
+ - `torchdynamo`: None
399
+ - `ray_scope`: last
400
+ - `ddp_timeout`: 1800
401
+ - `torch_compile`: False
402
+ - `torch_compile_backend`: None
403
+ - `torch_compile_mode`: None
404
+ - `dispatch_batches`: None
405
+ - `split_batches`: None
406
+ - `include_tokens_per_second`: False
407
+ - `include_num_input_tokens_seen`: False
408
+ - `neftune_noise_alpha`: None
409
+ - `optim_target_modules`: None
410
+ - `batch_eval_metrics`: False
411
+ - `eval_on_start`: False
412
+ - `eval_use_gather_object`: False
413
+ - `batch_sampler`: no_duplicates
414
+ - `multi_dataset_batch_sampler`: proportional
415
+
416
+ </details>
417
+
418
+ ### Training Logs
419
+ | Epoch | Step | Training Loss | Validation Loss |
420
+ |:------:|:----:|:-------------:|:---------------:|
421
+ | 0.0777 | 150 | 0.0257 | 0.0134 |
422
+ | 0.1554 | 300 | 0.0136 | 0.0082 |
423
+ | 0.2332 | 450 | 0.0079 | 0.0062 |
424
+ | 0.3109 | 600 | 0.0065 | 0.0051 |
425
+ | 0.3886 | 750 | 0.0059 | 0.0045 |
426
+ | 0.4663 | 900 | 0.0057 | 0.0040 |
427
+ | 0.5440 | 1050 | 0.0064 | 0.0037 |
428
+ | 0.6218 | 1200 | 0.005 | 0.0034 |
429
+ | 0.6995 | 1350 | 0.0052 | 0.0034 |
430
+ | 0.7772 | 1500 | 0.0041 | 0.0032 |
431
+
432
+
433
+ ### Framework Versions
434
+ - Python: 3.12.3
435
+ - Sentence Transformers: 3.2.0
436
+ - Transformers: 4.44.2
437
+ - PyTorch: 2.6.0+cu124
438
+ - Accelerate: 1.3.0
439
+ - Datasets: 2.19.0
440
+ - Tokenizers: 0.19.1
441
+
442
+ ## Citation
443
+
444
+ ### BibTeX
445
+
446
+ #### Sentence Transformers
447
+ ```bibtex
448
+ @inproceedings{reimers-2019-sentence-bert,
449
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
450
+ author = "Reimers, Nils and Gurevych, Iryna",
451
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
452
+ month = "11",
453
+ year = "2019",
454
+ publisher = "Association for Computational Linguistics",
455
+ url = "https://arxiv.org/abs/1908.10084",
456
+ }
457
+ ```
458
+
459
+ #### Infonce
460
+ ```bibtex
461
+ @misc{henderson2017efficient,
462
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
463
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
464
+ year={2017},
465
+ eprint={1705.00652},
466
+ archivePrefix={arXiv},
467
+ primaryClass={cs.CL}
468
+ }
469
+ ```
470
+
471
+ <!--
472
+ ## Glossary
473
+
474
+ *Clearly define terms in order to be accessible across audiences.*
475
+ -->
476
+
477
+ <!--
478
+ ## Model Card Authors
479
+
480
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
481
+ -->
482
+
483
+ <!--
484
+ ## Model Card Contact
485
+
486
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
487
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/autodl-tmp/work_dir/models/snowflake-arctic-embed-l-v2.0-selfloss/checkpoint-1500",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "query: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c7800583766c01c099fbd028593959fbf0032a6c9e1b164a6a54389fda3d8da
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e3b8957de04e3a4ed42b1a11381556f9adad8d0d502b9dd071c75f626b28f40
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 512,
50
+ "model_max_length": 1024,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }