Commit
·
b828897
1
Parent(s):
ba9f6db
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.23 +/- 0.08
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a307ef27602babeae8a271e220efc339bab6609908da5495b693379674ad6017
|
3 |
+
size 106832
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a2edc4ab910>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a2edc4a2c80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1693464568512969519,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAt8PIvitr4764tpQ+w7MDv5Jsbz+mD2g/w5ZdPcExmb+UFCw/LP6Mv+k0Sb9nogY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYM/ivlpEab+03rY/G4FFvzA9AT+qJL4/Lx8Evjveb7+rHKc/oKNNv58RjL7FyNI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC3w8i+K2vjvri2lD6U90+/vWbYvy0rVT/DswO/kmxvP6YPaD8xIuC/i66rvz37hD/Dll09wTGZv5QULD+CPaa/5mqRv4DnbT8s/oy/6TRJv2eiBj/oBV6/yXblPWVFtz+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-0.3921182 -0.444177 0.29045653]\n [-0.5144617 0.9352504 0.9064888 ]\n [ 0.05409886 -1.1968309 0.672189 ]\n [-1.1015067 -0.7859636 0.52591556]]",
|
34 |
+
"desired_goal": "[[-0.4429884 -0.9111992 1.4286714 ]\n [-0.77150124 0.5048399 1.4854939 ]\n [-0.1290252 -0.9369847 1.3055624 ]\n [-0.80327797 -0.27357194 1.646752 ]]",
|
35 |
+
"observation": "[[-0.3921182 -0.444177 0.29045653 -0.8123715 -1.6906353 0.83269006]\n [-0.5144617 0.9352504 0.9064888 -1.7510434 -1.3412641 1.0389172 ]\n [ 0.05409886 -1.1968309 0.672189 -1.2987521 -1.1360748 0.92931366]\n [-1.1015067 -0.7859636 0.52591556 -0.8672776 0.11204297 1.4318053 ]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQb3nva8ApDx1hDU+5x/vPZSKxDwhGB0+sagWPqMZjL3gwmM+P1CsvZ3l27od42s9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.11315394 0.02001986 0.1772631 ]\n [ 0.11676007 0.02399186 0.15341236]\n [ 0.14712788 -0.06840827 0.22242308]\n [-0.08413743 -0.00167768 0.05758964]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7tu1ndweeaMAWyUSwKMAXSUR0C1VGXbRF7VdX2UKGgGR7+pFb3XZoPDaAdLAWgIR0C1VGfj0cwQdX2UKGgGR7/QUwi7kGRnaAdLA2gIR0C1VEk0vXbudX2UKGgGR7/QckdFOO81aAdLA2gIR0C1VCpdWyTqdX2UKGgGR7/ekBjnV5KOaAdLBWgIR0C1VA5vxYq5dX2UKGgGR7+1y0a6z3RHaAdLAmgIR0C1VC8ir1dxdX2UKGgGR7/IQQL/jsD5aAdLA2gIR0C1VFEoScsldX2UKGgGR7/gzWGyon8baAdLBGgIR0C1VHIGD+R6dX2UKGgGR7/BNEgGKQ7taAdLAmgIR0C1VDRN/OMVdX2UKGgGR7/cpqh11W8zaAdLBGgIR0C1VBdIPK+0dX2UKGgGR7/LOwgTyrggaAdLA2gIR0C1VHiiyprDdX2UKGgGR7/S09hZyMkyaAdLBGgIR0C1VFnpjc2zdX2UKGgGR7/KdPLxI8QqaAdLA2gIR0C1VDsBp5/tdX2UKGgGR7/AJeE7GNrCaAdLAmgIR0C1VHxMzuWsdX2UKGgGR7/YAIY3vQWvaAdLBGgIR0C1VB+zposadX2UKGgGR7/Vy6+WWyC4aAdLBGgIR0C1VEMv7FbWdX2UKGgGR7/WCXyAhB7eaAdLBWgIR0C1VGQp8WsSdX2UKGgGR7/Rvn8sMAmzaAdLBGgIR0C1VITL8rI6dX2UKGgGR7/I1UlzEJjUaAdLA2gIR0C1VEjziCJ5dX2UKGgGR7/UMxXXAdn1aAdLBWgIR0C1VCpLAYYSdX2UKGgGR7/QtwaR6nivaAdLA2gIR0C1VIu23KB/dX2UKGgGR7/bBWxQizLPaAdLBGgIR0C1VG0ONHYpdX2UKGgGR7/AZML4N7SiaAdLAmgIR0C1VE4tL+PzdX2UKGgGR7/Q4rjHXEqEaAdLA2gIR0C1VDE1VHWjdX2UKGgGR7/FYEnssxwiaAdLAmgIR0C1VI+vECNkdX2UKGgGR7/CyqMm4RVZaAdLAmgIR0C1VJNxVAAydX2UKGgGR7/WwTdtVJcxaAdLBGgIR0C1VFXdGiHqdX2UKGgGR7/U4BFNL128aAdLBWgIR0C1VHfkRzzVdX2UKGgGR7/QUz9CNS62aAdLBGgIR0C1VDonWrfcdX2UKGgGR7/QQ+UyHmA9aAdLA2gIR0C1VH1Xq7iAdX2UKGgGR7/VaOPvKEFoaAdLBGgIR0C1VF5sCT2WdX2UKGgGR7/Rid8Rcu8LaAdLA2gIR0C1VD+32EkCdX2UKGgGR7/YRfF72L5zaAdLBWgIR0C1VJ40VJtjdX2UKGgGR7+ilzltCRfXaAdLAWgIR0C1VKEb961LdX2UKGgGR7/EVMVUMoc8aAdLAmgIR0C1VGNic5KfdX2UKGgGR7+1i6QNkOI7aAdLAmgIR0C1VESb2Dg7dX2UKGgGR7/Zdlum78NyaAdLBGgIR0C1VIYACGN8dX2UKGgGR7/NpmmLtNSJaAdLA2gIR0C1VKar/82rdX2UKGgGR7/IEtdzGPxQaAdLA2gIR0C1VGkQGwA3dX2UKGgGR7/HNYbKifxuaAdLA2gIR0C1VEpFspG4dX2UKGgGR7/Jomois4kvaAdLA2gIR0C1VIyp71IzdX2UKGgGR7/APtlZowmFaAdLAmgIR0C1VE7iqABldX2UKGgGR7/O2+fywwCbaAdLA2gIR0C1VK1cD8tPdX2UKGgGR7+k4DLbHp8naAdLAWgIR0C1VI6mCROldX2UKGgGR7/SZDiOvMbFaAdLA2gIR0C1VG/huO0cdX2UKGgGR7+4zi0fHPu5aAdLAmgIR0C1VFLq6e5GdX2UKGgGR7+7FrEcbR4RaAdLAmgIR0C1VLFhXr+pdX2UKGgGR7+4HB1s+FDfaAdLAmgIR0C1VHO6NEPUdX2UKGgGR7/NfnfVI7NjaAdLA2gIR0C1VJSkwevIdX2UKGgGR7/P0knkT6BRaAdLA2gIR0C1VHpwsGxEdX2UKGgGR7/aP7N0NjLCaAdLBGgIR0C1VFu2NNrTdX2UKGgGR7/dKpDNQj2SaAdLBWgIR0C1VLw176YWdX2UKGgGR7/duPV/c32maAdLBWgIR0C1VJ+VxCIDdX2UKGgGR7/NP69CeEqUaAdLA2gIR0C1VGIO2AoYdX2UKGgGR7/eUYKpkwvhaAdLBGgIR0C1VIPrv9cbdX2UKGgGR7/O4NI9TxXoaAdLBGgIR0C1VMWYfGModX2UKGgGR7/R/dZaFEiMaAdLA2gIR0C1VGkVFhG6dX2UKGgGR7/WVrRBu4wzaAdLBWgIR0C1VKq06YE4dX2UKGgGR7/ZQf6oESuhaAdLBGgIR0C1VIvxQSBcdX2UKGgGR7+kYwZflZHNaAdLAWgIR0C1VK4QnQY2dX2UKGgGR7+peNT987ZGaAdLAWgIR0C1VI8ynDR/dX2UKGgGR7/TJvHcUM5PaAdLA2gIR0C1VHBz7uUmdX2UKGgGR7/TgdwNsnAqaAdLBGgIR0C1VM8B+4LDdX2UKGgGR7+g2S+xnnMdaAdLAWgIR0C1VHKTGHYZdX2UKGgGR7/N6TGHYYixaAdLA2gIR0C1VLP1tfoidX2UKGgGR7+5/6O5rgwXaAdLAmgIR0C1VHY8U21ldX2UKGgGR7/QfOD8LrooaAdLBGgIR0C1VJbw4KhMdX2UKGgGR7/Wf0mMOwxGaAdLBWgIR0C1VNmR3eN2dX2UKGgGR7/UVoHs1KoRaAdLBGgIR0C1VLzKoybhdX2UKGgGR7/AE9t/FzdUaAdLAmgIR0C1VN12eQMhdX2UKGgGR7/VeC04R28qaAdLBGgIR0C1VJ/A0sOHdX2UKGgGR7/eOzIFNcnmaAdLBWgIR0C1VID6zmfXdX2UKGgGR7/Xoakyk9EDaAdLBGgIR0C1VMWce8wpdX2UKGgGR7/Wmig00m+kaAdLBGgIR0C1VOZavA45dX2UKGgGR7/WeWOZLIxQaAdLBGgIR0C1VIniiqQzdX2UKGgGR7+812q1gH/taAdLAmgIR0C1VOpE+gUUdX2UKGgGR7/JIWgvlEJCaAdLA2gIR0C1VMuVHFxXdX2UKGgGR7/cbpeNT987aAdLBmgIR0C1VKypm29ddX2UKGgGR7+5jhDPWxyGaAdLAmgIR0C1VLGuoxYadX2UKGgGR7/XVKf4AS39aAdLBGgIR0C1VJLzf779dX2UKGgGR7/S2B8QZn+RaAdLBGgIR0C1VPMnNPgvdX2UKGgGR7/UDye7L+xXaAdLBGgIR0C1VNSs8xKydX2UKGgGR7/RgdOqNp/PaAdLA2gIR0C1VLh4+r2hdX2UKGgGR7/E9oN/e+EiaAdLA2gIR0C1VJmvfTCtdX2UKGgGR7/Mx/NJOFg2aAdLA2gIR0C1VNxk3CKrdX2UKGgGR7/esUIsyzomaAdLBWgIR0C1VP7u2JBPdX2UKGgGR7/agrpaA4GVaAdLBGgIR0C1VKKdQO4HdX2UKGgGR7/RgU1yeZogaAdLA2gIR0C1VOLCJoCddX2UKGgGR7+gTRIBikO7aAdLAWgIR0C1VOXMhX8wdX2UKGgGR7/LUnXumaYvaAdLA2gIR0C1VKoPTXrddX2UKGgGR7/lEehf0EowaAdLCGgIR0C1VMtlRP43dX2UKGgGR7/OXoC+10DEaAdLA2gIR0C1VOyFCb+cdX2UKGgGR7+41Gb1AZ88aAdLAmgIR0C1VK6/20zCdX2UKGgGR7/ZVbA1vVEvaAdLBmgIR0C1VQ1qWToudX2UKGgGR7++8J2MbWEsaAdLAmgIR0C1VPGhZha1dX2UKGgGR7+6rhisny/caAdLAmgIR0C1VLPZRKpUdX2UKGgGR7+ehCdBjWkKaAdLAWgIR0C1VPOcYqG2dX2UKGgGR7/VEGqxTsIFaAdLBWgIR0C1VNaQmu1XdX2UKGgGR7/DYRujynUEaAdLAmgIR0C1VLfJNj9XdX2UKGgGR7/YCL/CIk7faAdLBGgIR0C1VRZCF9KFdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 100000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6eb082ce47884aa0c2797efd1fb9f74c3461132516be23ada98728c2e6b3558a
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5653b24015865df177435e76f7899372ca0eb82b3992752c0edea0e18e1cdd3
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a2edc4ab910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a2edc4a2c80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693464568512969519, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAt8PIvitr4764tpQ+w7MDv5Jsbz+mD2g/w5ZdPcExmb+UFCw/LP6Mv+k0Sb9nogY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYM/ivlpEab+03rY/G4FFvzA9AT+qJL4/Lx8Evjveb7+rHKc/oKNNv58RjL7FyNI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC3w8i+K2vjvri2lD6U90+/vWbYvy0rVT/DswO/kmxvP6YPaD8xIuC/i66rvz37hD/Dll09wTGZv5QULD+CPaa/5mqRv4DnbT8s/oy/6TRJv2eiBj/oBV6/yXblPWVFtz+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.3921182 -0.444177 0.29045653]\n [-0.5144617 0.9352504 0.9064888 ]\n [ 0.05409886 -1.1968309 0.672189 ]\n [-1.1015067 -0.7859636 0.52591556]]", "desired_goal": "[[-0.4429884 -0.9111992 1.4286714 ]\n [-0.77150124 0.5048399 1.4854939 ]\n [-0.1290252 -0.9369847 1.3055624 ]\n [-0.80327797 -0.27357194 1.646752 ]]", "observation": "[[-0.3921182 -0.444177 0.29045653 -0.8123715 -1.6906353 0.83269006]\n [-0.5144617 0.9352504 0.9064888 -1.7510434 -1.3412641 1.0389172 ]\n [ 0.05409886 -1.1968309 0.672189 -1.2987521 -1.1360748 0.92931366]\n [-1.1015067 -0.7859636 0.52591556 -0.8672776 0.11204297 1.4318053 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQb3nva8ApDx1hDU+5x/vPZSKxDwhGB0+sagWPqMZjL3gwmM+P1CsvZ3l27od42s9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11315394 0.02001986 0.1772631 ]\n [ 0.11676007 0.02399186 0.15341236]\n [ 0.14712788 -0.06840827 0.22242308]\n [-0.08413743 -0.00167768 0.05758964]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7tu1ndweeaMAWyUSwKMAXSUR0C1VGXbRF7VdX2UKGgGR7+pFb3XZoPDaAdLAWgIR0C1VGfj0cwQdX2UKGgGR7/QUwi7kGRnaAdLA2gIR0C1VEk0vXbudX2UKGgGR7/QckdFOO81aAdLA2gIR0C1VCpdWyTqdX2UKGgGR7/ekBjnV5KOaAdLBWgIR0C1VA5vxYq5dX2UKGgGR7+1y0a6z3RHaAdLAmgIR0C1VC8ir1dxdX2UKGgGR7/IQQL/jsD5aAdLA2gIR0C1VFEoScsldX2UKGgGR7/gzWGyon8baAdLBGgIR0C1VHIGD+R6dX2UKGgGR7/BNEgGKQ7taAdLAmgIR0C1VDRN/OMVdX2UKGgGR7/cpqh11W8zaAdLBGgIR0C1VBdIPK+0dX2UKGgGR7/LOwgTyrggaAdLA2gIR0C1VHiiyprDdX2UKGgGR7/S09hZyMkyaAdLBGgIR0C1VFnpjc2zdX2UKGgGR7/KdPLxI8QqaAdLA2gIR0C1VDsBp5/tdX2UKGgGR7/AJeE7GNrCaAdLAmgIR0C1VHxMzuWsdX2UKGgGR7/YAIY3vQWvaAdLBGgIR0C1VB+zposadX2UKGgGR7/Vy6+WWyC4aAdLBGgIR0C1VEMv7FbWdX2UKGgGR7/WCXyAhB7eaAdLBWgIR0C1VGQp8WsSdX2UKGgGR7/Rvn8sMAmzaAdLBGgIR0C1VITL8rI6dX2UKGgGR7/I1UlzEJjUaAdLA2gIR0C1VEjziCJ5dX2UKGgGR7/UMxXXAdn1aAdLBWgIR0C1VCpLAYYSdX2UKGgGR7/QtwaR6nivaAdLA2gIR0C1VIu23KB/dX2UKGgGR7/bBWxQizLPaAdLBGgIR0C1VG0ONHYpdX2UKGgGR7/AZML4N7SiaAdLAmgIR0C1VE4tL+PzdX2UKGgGR7/Q4rjHXEqEaAdLA2gIR0C1VDE1VHWjdX2UKGgGR7/FYEnssxwiaAdLAmgIR0C1VI+vECNkdX2UKGgGR7/CyqMm4RVZaAdLAmgIR0C1VJNxVAAydX2UKGgGR7/WwTdtVJcxaAdLBGgIR0C1VFXdGiHqdX2UKGgGR7/U4BFNL128aAdLBWgIR0C1VHfkRzzVdX2UKGgGR7/QUz9CNS62aAdLBGgIR0C1VDonWrfcdX2UKGgGR7/QQ+UyHmA9aAdLA2gIR0C1VH1Xq7iAdX2UKGgGR7/VaOPvKEFoaAdLBGgIR0C1VF5sCT2WdX2UKGgGR7/Rid8Rcu8LaAdLA2gIR0C1VD+32EkCdX2UKGgGR7/YRfF72L5zaAdLBWgIR0C1VJ40VJtjdX2UKGgGR7+ilzltCRfXaAdLAWgIR0C1VKEb961LdX2UKGgGR7/EVMVUMoc8aAdLAmgIR0C1VGNic5KfdX2UKGgGR7+1i6QNkOI7aAdLAmgIR0C1VESb2Dg7dX2UKGgGR7/Zdlum78NyaAdLBGgIR0C1VIYACGN8dX2UKGgGR7/NpmmLtNSJaAdLA2gIR0C1VKar/82rdX2UKGgGR7/IEtdzGPxQaAdLA2gIR0C1VGkQGwA3dX2UKGgGR7/HNYbKifxuaAdLA2gIR0C1VEpFspG4dX2UKGgGR7/Jomois4kvaAdLA2gIR0C1VIyp71IzdX2UKGgGR7/APtlZowmFaAdLAmgIR0C1VE7iqABldX2UKGgGR7/O2+fywwCbaAdLA2gIR0C1VK1cD8tPdX2UKGgGR7+k4DLbHp8naAdLAWgIR0C1VI6mCROldX2UKGgGR7/SZDiOvMbFaAdLA2gIR0C1VG/huO0cdX2UKGgGR7+4zi0fHPu5aAdLAmgIR0C1VFLq6e5GdX2UKGgGR7+7FrEcbR4RaAdLAmgIR0C1VLFhXr+pdX2UKGgGR7+4HB1s+FDfaAdLAmgIR0C1VHO6NEPUdX2UKGgGR7/NfnfVI7NjaAdLA2gIR0C1VJSkwevIdX2UKGgGR7/P0knkT6BRaAdLA2gIR0C1VHpwsGxEdX2UKGgGR7/aP7N0NjLCaAdLBGgIR0C1VFu2NNrTdX2UKGgGR7/dKpDNQj2SaAdLBWgIR0C1VLw176YWdX2UKGgGR7/duPV/c32maAdLBWgIR0C1VJ+VxCIDdX2UKGgGR7/NP69CeEqUaAdLA2gIR0C1VGIO2AoYdX2UKGgGR7/eUYKpkwvhaAdLBGgIR0C1VIPrv9cbdX2UKGgGR7/O4NI9TxXoaAdLBGgIR0C1VMWYfGModX2UKGgGR7/R/dZaFEiMaAdLA2gIR0C1VGkVFhG6dX2UKGgGR7/WVrRBu4wzaAdLBWgIR0C1VKq06YE4dX2UKGgGR7/ZQf6oESuhaAdLBGgIR0C1VIvxQSBcdX2UKGgGR7+kYwZflZHNaAdLAWgIR0C1VK4QnQY2dX2UKGgGR7+peNT987ZGaAdLAWgIR0C1VI8ynDR/dX2UKGgGR7/TJvHcUM5PaAdLA2gIR0C1VHBz7uUmdX2UKGgGR7/TgdwNsnAqaAdLBGgIR0C1VM8B+4LDdX2UKGgGR7+g2S+xnnMdaAdLAWgIR0C1VHKTGHYZdX2UKGgGR7/N6TGHYYixaAdLA2gIR0C1VLP1tfoidX2UKGgGR7+5/6O5rgwXaAdLAmgIR0C1VHY8U21ldX2UKGgGR7/QfOD8LrooaAdLBGgIR0C1VJbw4KhMdX2UKGgGR7/Wf0mMOwxGaAdLBWgIR0C1VNmR3eN2dX2UKGgGR7/UVoHs1KoRaAdLBGgIR0C1VLzKoybhdX2UKGgGR7/AE9t/FzdUaAdLAmgIR0C1VN12eQMhdX2UKGgGR7/VeC04R28qaAdLBGgIR0C1VJ/A0sOHdX2UKGgGR7/eOzIFNcnmaAdLBWgIR0C1VID6zmfXdX2UKGgGR7/Xoakyk9EDaAdLBGgIR0C1VMWce8wpdX2UKGgGR7/Wmig00m+kaAdLBGgIR0C1VOZavA45dX2UKGgGR7/WeWOZLIxQaAdLBGgIR0C1VIniiqQzdX2UKGgGR7+812q1gH/taAdLAmgIR0C1VOpE+gUUdX2UKGgGR7/JIWgvlEJCaAdLA2gIR0C1VMuVHFxXdX2UKGgGR7/cbpeNT987aAdLBmgIR0C1VKypm29ddX2UKGgGR7+5jhDPWxyGaAdLAmgIR0C1VLGuoxYadX2UKGgGR7/XVKf4AS39aAdLBGgIR0C1VJLzf779dX2UKGgGR7/S2B8QZn+RaAdLBGgIR0C1VPMnNPgvdX2UKGgGR7/UDye7L+xXaAdLBGgIR0C1VNSs8xKydX2UKGgGR7/RgdOqNp/PaAdLA2gIR0C1VLh4+r2hdX2UKGgGR7/E9oN/e+EiaAdLA2gIR0C1VJmvfTCtdX2UKGgGR7/Mx/NJOFg2aAdLA2gIR0C1VNxk3CKrdX2UKGgGR7/esUIsyzomaAdLBWgIR0C1VP7u2JBPdX2UKGgGR7/agrpaA4GVaAdLBGgIR0C1VKKdQO4HdX2UKGgGR7/RgU1yeZogaAdLA2gIR0C1VOLCJoCddX2UKGgGR7+gTRIBikO7aAdLAWgIR0C1VOXMhX8wdX2UKGgGR7/LUnXumaYvaAdLA2gIR0C1VKoPTXrddX2UKGgGR7/lEehf0EowaAdLCGgIR0C1VMtlRP43dX2UKGgGR7/OXoC+10DEaAdLA2gIR0C1VOyFCb+cdX2UKGgGR7+41Gb1AZ88aAdLAmgIR0C1VK6/20zCdX2UKGgGR7/ZVbA1vVEvaAdLBmgIR0C1VQ1qWToudX2UKGgGR7++8J2MbWEsaAdLAmgIR0C1VPGhZha1dX2UKGgGR7+6rhisny/caAdLAmgIR0C1VLPZRKpUdX2UKGgGR7+ehCdBjWkKaAdLAWgIR0C1VPOcYqG2dX2UKGgGR7/VEGqxTsIFaAdLBWgIR0C1VNaQmu1XdX2UKGgGR7/DYRujynUEaAdLAmgIR0C1VLfJNj9XdX2UKGgGR7/YCL/CIk7faAdLBGgIR0C1VRZCF9KFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (746 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.2260198460891843, "std_reward": 0.08236381891054856, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-31T07:39:18.266408"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66b4b4e36f91a3aa5ec6c0eda5d48f5cb767a7ba4ba7d9822eb1524bdcc47d53
|
3 |
+
size 2623
|