Jorgvt commited on
Commit
7caaf3e
·
2 Parent(s): 9a3e241 08474c3

Merge branch 'main' of https://huggingface.co/Jorgvt/PerceptNet

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md CHANGED
@@ -1,3 +1,50 @@
1
  ---
2
  license: afl-3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: afl-3.0
3
+
4
+ tags:
5
+ - tensorflow
6
+ - feature_extraction
7
+ - image
8
+ - perceptual_metric
9
+
10
+ datasets:
11
+ - tid2008
12
+ - tid2013
13
+
14
+ metrics:
15
+ - pearsonr
16
+
17
+ model_index:
18
+ - name: PerceptNet
19
+ - task:
20
+ type: feature_extraction
21
+ name: Perceptual Distance
22
+ dataset:
23
+ type: image
24
+ name: tid2013
25
+ metrics:
26
+ - type: pearsonr
27
+ value: 0.93
28
+ name: TID2013
29
+
30
  ---
31
+
32
+ # PerceptNet
33
+
34
+ PercepNet model trained on TID2008 and validated on TID2013, obtaining 0.97 and 0.93 Pearson Correlation respectively.
35
+
36
+ Link to the run: https://wandb.ai/jorgvt/PerceptNet/runs/28m2cnzj?workspace=user-jorgvt
37
+
38
+ # Usage
39
+
40
+ As of now to use the model you have to install the [PerceptNet repo](https://github.com/Jorgvt/perceptnet) to get access to the `PerceptNet` class where you will load the weights available here like this:
41
+
42
+ ```python
43
+ from perceptnet.networks import PerceptNet
44
+
45
+ weights_path = get_file(fname='perceptnet_rgb.h5',
46
+ origin='https://huggingface.co/Jorgvt/PerceptNet/blob/main/final_model_rgb.h5')
47
+ model = PerceptNet(kernel_initializer='ones', gdn_kernel_size=1, learnable_undersampling=False)
48
+ model.build(input_shape=(None, 384, 512, 3))
49
+ model.load_weights(weights_path)
50
+ ```