JoBeer commited on
Commit
0d3b69c
·
1 Parent(s): 9739a41

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -39
README.md CHANGED
@@ -4,10 +4,10 @@ tags:
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
-
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
@@ -42,39 +42,7 @@ For an automated evaluation of this model, see the *Sentence Embeddings Benchmar
42
 
43
 
44
  ## Training
45
- The model was trained with the parameters:
46
-
47
- **DataLoader**:
48
-
49
- `torch.utils.data.dataloader.DataLoader` of length 43680 with parameters:
50
- ```
51
- {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
52
- ```
53
-
54
- **Loss**:
55
-
56
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
57
- ```
58
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
59
- ```
60
-
61
- Parameters of the fit()-Method:
62
- ```
63
- {
64
- "epochs": 2,
65
- "evaluation_steps": 0,
66
- "evaluator": "NoneType",
67
- "max_grad_norm": 1,
68
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
69
- "optimizer_params": {
70
- "lr": 2e-05
71
- },
72
- "scheduler": "WarmupLinear",
73
- "steps_per_epoch": null,
74
- "warmup_steps": 8736,
75
- "weight_decay": 0.01
76
- }
77
- ```
78
 
79
 
80
  ## Full Model Architecture
@@ -85,7 +53,3 @@ SentenceTransformer(
85
  (2): Normalize()
86
  )
87
  ```
88
-
89
- ## Citing & Authors
90
-
91
- <!--- Describe where people can find more information -->
 
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
+ - transformers
8
  ---
9
 
10
+ # {all-mpnet-base-v2-eclass}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
 
42
 
43
 
44
  ## Training
45
+ The Model was trained with the eclass-dataset (https://huggingface.co/datasets/JoBeer/eclassTrainST).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
 
48
  ## Full Model Architecture
 
53
  (2): Normalize()
54
  )
55
  ```