Update README.md
Browse files
README.md
CHANGED
@@ -4,10 +4,10 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
-
|
8 |
---
|
9 |
|
10 |
-
# {
|
11 |
|
12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
@@ -42,39 +42,7 @@ For an automated evaluation of this model, see the *Sentence Embeddings Benchmar
|
|
42 |
|
43 |
|
44 |
## Training
|
45 |
-
The
|
46 |
-
|
47 |
-
**DataLoader**:
|
48 |
-
|
49 |
-
`torch.utils.data.dataloader.DataLoader` of length 43680 with parameters:
|
50 |
-
```
|
51 |
-
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
52 |
-
```
|
53 |
-
|
54 |
-
**Loss**:
|
55 |
-
|
56 |
-
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
57 |
-
```
|
58 |
-
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
59 |
-
```
|
60 |
-
|
61 |
-
Parameters of the fit()-Method:
|
62 |
-
```
|
63 |
-
{
|
64 |
-
"epochs": 2,
|
65 |
-
"evaluation_steps": 0,
|
66 |
-
"evaluator": "NoneType",
|
67 |
-
"max_grad_norm": 1,
|
68 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
69 |
-
"optimizer_params": {
|
70 |
-
"lr": 2e-05
|
71 |
-
},
|
72 |
-
"scheduler": "WarmupLinear",
|
73 |
-
"steps_per_epoch": null,
|
74 |
-
"warmup_steps": 8736,
|
75 |
-
"weight_decay": 0.01
|
76 |
-
}
|
77 |
-
```
|
78 |
|
79 |
|
80 |
## Full Model Architecture
|
@@ -85,7 +53,3 @@ SentenceTransformer(
|
|
85 |
(2): Normalize()
|
86 |
)
|
87 |
```
|
88 |
-
|
89 |
-
## Citing & Authors
|
90 |
-
|
91 |
-
<!--- Describe where people can find more information -->
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
+
- transformers
|
8 |
---
|
9 |
|
10 |
+
# {all-mpnet-base-v2-eclass}
|
11 |
|
12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
|
|
42 |
|
43 |
|
44 |
## Training
|
45 |
+
The Model was trained with the eclass-dataset (https://huggingface.co/datasets/JoBeer/eclassTrainST).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
|
48 |
## Full Model Architecture
|
|
|
53 |
(2): Normalize()
|
54 |
)
|
55 |
```
|
|
|
|
|
|
|
|