# MIT License # Copyright (c) 2025 IPEC at Shanghai AI Laboratory # Permission is hereby granted, free of charge, to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND. # Based on code licensed under the Apache License, Version 2.0 by Google Inc. and HuggingFace Inc. team (Copyright 2024). # coding=utf-8 """ Processor class for PaliGemma. """ import logging from typing import List, Optional, Union, Dict import torch import numpy as np from transformers.feature_extraction_utils import BatchFeature from transformers.image_utils import ImageInput, is_valid_image from transformers.processing_utils import ( ImagesKwargs, ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack, _validate_images_text_input_order, ) from transformers.tokenization_utils_base import ( AddedToken, PreTokenizedInput, TextInput, ) from transformers.utils import logging from .action_tokenizer import SphericalCoordinateActionTokenizer logger = logging.get_logger(__name__) IMAGE_TOKEN = "" EXTRA_TOKENS = [f"4}>" for i in range(1024)] + [f"3}>" for i in range(128)] class PaliGemmaTextKwargs(TextKwargs): suffix: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] class PaliGemmaImagesKwargs(ImagesKwargs): do_convert_rgb: Optional[bool] class PaliGemmaProcessorKwargs(ProcessingKwargs, total=False): text_kwargs: PaliGemmaTextKwargs images_kwargs: PaliGemmaImagesKwargs _defaults = { "text_kwargs": { "padding": False, }, "images_kwargs": { "data_format": "channels_first", }, } # Copied from transformers.models.idefics2.processing_idefics2.is_url def is_url(val) -> bool: return isinstance(val, str) and val.startswith("http") # Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url def is_image_or_image_url(elem): return is_url(elem) or is_valid_image(elem) def _is_str_or_image(elem): return isinstance(elem, (str)) or is_image_or_image_url(elem) def build_string_from_input(prompt, bos_token, image_seq_len, image_token, num_images): """ Builds a string from the input prompt and image tokens. For example, for the call: build_string_from_input( prompt="Prefix str" bos_token="", image_seq_len=3, image_token="", ) The output will be: "Initial str" Args: prompt (`List[Union[str, ImageInput]]`): The input prompt. bos_token (`str`): The beginning of sentence token. image_seq_len (`int`): The length of the image sequence. image_token (`str`): The image token. num_images (`int`): Number of images in the prompt. """ return f"{image_token * image_seq_len * num_images}{bos_token}{prompt}\n" # Copied from transformers.models.llava_next.image_processing_llava_next.make_batched_images def make_batched_images(images) -> List[List[ImageInput]]: """ Accepts images in list or nested list format, and makes a list of images for preprocessing. Args: images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`): The input image. Returns: list: A list of images. """ if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]): return [img for img_list in images for img in img_list] elif isinstance(images, (list, tuple)) and is_valid_image(images[0]): return images elif is_valid_image(images): return [images] raise ValueError(f"Could not make batched video from {images}") class SpatialVLAProcessor(ProcessorMixin): r""" Constructs a PaliGemma processor which wraps a PaliGemma image processor and a PaliGemma tokenizer into a single processor. [`PaliGemmaProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`LlamaTokenizerFast`]. See the [`~PaliGemmaProcessor.__call__`] and [`~PaliGemmaProcessor.decode`] for more information. Args: image_processor ([`SiglipImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = ["chat_template"] image_processor_class = "SiglipImageProcessor" tokenizer_class = ("GemmaTokenizer", "GemmaTokenizerFast") def __init__( self, image_processor=None, tokenizer=None, chat_template=None, statistics: Optional[dict] = None, bin_policy=None, intrinsic_config=None, action_config=None, num_obs_steps=1, obs_delta=1, action_chunk_size=1, min_sigma=0.0, **kwargs, ): if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") if not hasattr(image_processor, "image_seq_length"): raise ValueError("Image processor is missing an `image_seq_length` attribute.") self.image_seq_length = image_processor.image_seq_length if not hasattr(tokenizer, "image_token"): image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True) tokens_to_add = {"additional_special_tokens": [image_token]} tokenizer.add_special_tokens(tokens_to_add) self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) else: self.image_token_id = tokenizer.image_token_id tokenizer.add_tokens(EXTRA_TOKENS) tokenizer.add_bos_token = False tokenizer.add_eos_token = False super().__init__(image_processor, tokenizer, chat_template=chat_template) # action tokenizer self.statistics = statistics if statistics else {} self.bin_policy = bin_policy self.min_sigma = min_sigma self.intrinsic_config = intrinsic_config self.action_config = action_config self.num_obs_steps = num_obs_steps self.obs_delta = obs_delta self.action_chunk_size = action_chunk_size self.dataset_intrinsics = {} height, width = image_processor.size["height"], image_processor.size["width"] for k, v in intrinsic_config.items(): K = torch.tensor(v["intrinsic"]).float() h, w = v["height"], v["width"] K[0, 0] *= width / w K[1, 1] *= height / h K[0, 2] *= width / w K[1, 2] *= height / h self.dataset_intrinsics[k] = K print(f"scale intrinsic of {k} from {v['intrinsic']} to {K} ...") self.action_tokenizer = SphericalCoordinateActionTokenizer( tokenizer=tokenizer, num_bins=action_config["num_bins"], bin_policy=bin_policy, use_spherical=action_config["use_spherical"], min_sigma=min_sigma, ) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, audio=None, videos=None, unnorm_key: Optional[str] = None, suffix_actions: Optional[np.array] = None, # (t e) **kwargs: Unpack[PaliGemmaProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. The usage for PaliGemma fine-tuning preparation is slightly different than usual. suffix passed are suffixes to the prompt in `text`, and will be placed after the prompt. This is because attention is handled differently for the prefix and the suffix. For instance, ```python image = PIL_cow_image prompt = "answer en Where is the cow standing?" suffix = "on the beach" inputs = processor(text=prompt, images=image, suffix=suffix) ``` Here `inputs` will contain the `input_ids` and `token_type_ids` that follow ```python inputs["input_ids"][:, 256:] # tensor([[ 2, 6006, 603, 573, 13910, 9980, 235336, 108, 477, 573, 8318]]) inputs["token_type_ids"][:, 256:] tensor([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]]) ``` Meaning the last three tokens are of "label" ("suffix") type while the other ones are of "prefix" type. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. suffix (`str`, `List[str]`, `List[List[str]]`): The suffixes or batch of suffixes to be encoded. Only necessary for finetuning. See https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md for more information. If your prompt is " What is on the image", the suffix corresponds to the expected prediction "a cow sitting on a bench". Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix` is provided, the `input_ids` will also contain the suffix input ids. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. - **labels** -- Labels compatible with training if `suffix` is not None """ # check if images and text inputs are reversed for BC images, text = _validate_images_text_input_order(images, text) output_kwargs = self._merge_kwargs( PaliGemmaProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) if suffix_actions is not None: action_tokens = self.action_tokenizer(suffix_actions) # (n,3) suffix="".join(action_tokens.flatten()) else: suffix = output_kwargs["text_kwargs"].pop("suffix", None) return_token_type_ids = True if suffix is not None else False if images is None: raise ValueError("`images` are expected as arguments to a `PaliGemmaProcessor` instance.") if text is None: logger.warning_once( "You are using PaliGemma without a text prefix. It will perform as a picture-captioning model." ) text = "" if _is_str_or_image(text): text = [text] elif isinstance(text, list) and _is_str_or_image(text[0]): pass if text is not None and images is not None: if not any(IMAGE_TOKEN in sample for sample in text): # logger.warning( # "You are passing both `text` and `images` to `PaliGemmaProcessor`. The processor expects special " # "image tokens in the text, as many tokens as there are images per each text. It is recommended to " # "add `` tokens in the very beginning of your text. For this call, we will infer how many images " # "each text has and add special tokens." # ) if isinstance(text, List) and isinstance(images, List): if len(images) != len(text): raise ValueError( f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image or list of images." ) # make a nested list of lists to be able to iterate over the images and text below if is_valid_image(images): images = [[images]] elif isinstance(images, list) and is_valid_image(images[0]): images = [[image] for image in images] elif not (isinstance(images, list) and isinstance(images[0], list) and is_valid_image(images[0][0])): raise ValueError("images must be an image, list of images or list of list of images") if suffix is not None and _is_str_or_image(suffix): suffix = [suffix] if suffix is not None: suffix = [sfx + self.tokenizer.eos_token for sfx in suffix] input_strings = [ build_string_from_input( prompt=prompt, bos_token=self.tokenizer.bos_token, image_seq_len=self.image_seq_length, image_token=IMAGE_TOKEN, num_images=len(image_list) if isinstance(image_list, list) else 1, ) for prompt, image_list in zip(text, images) ] images = make_batched_images(images) else: expanded_samples = [] for sample in text: expanded_sample = sample.replace(IMAGE_TOKEN, IMAGE_TOKEN * self.image_seq_length) bos_rfind_index = expanded_sample.rfind(IMAGE_TOKEN) bos_index = bos_rfind_index + len(IMAGE_TOKEN) if bos_rfind_index != -1 else 0 expanded_sample = ( expanded_sample[:bos_index] + self.tokenizer.bos_token + expanded_sample[bos_index:] ) expanded_samples.append(expanded_sample) input_strings = [f"{sample}\n" for sample in expanded_samples] pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"] # max_length has to account for the image tokens if output_kwargs["text_kwargs"].get("max_length", None) is not None: output_kwargs["text_kwargs"]["max_length"] += self.image_seq_length inputs = self.tokenizer( input_strings, text_pair=suffix, return_token_type_ids=return_token_type_ids, **output_kwargs["text_kwargs"], ) intrinsic = self.dataset_intrinsics[unnorm_key] if unnorm_key in self.dataset_intrinsics else self.dataset_intrinsics["default"] return_data = {**inputs, "pixel_values": pixel_values, "intrinsic": intrinsic} if return_token_type_ids: labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100) return_data.update({"labels": labels}) return BatchFeature(data=return_data) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma def decode(self, *args, **kwargs): """ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->PaliGemma def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def decode_actions( self, generation_outputs: torch.Tensor, unnorm_key: Optional[str] = None, ) -> Dict[str, torch.Tensor]: action_token_num = 3 # translation + rotation + gripper predicted_action_token_ids = generation_outputs[0, : action_token_num * self.action_chunk_size].detach().cpu().long().numpy() assert self.tokenizer.eos_token != predicted_action_token_ids[-1], "[error] actions contain EOS token, please check you truncation settings!" if predicted_action_token_ids.shape[0] < action_token_num * self.action_chunk_size: # pad with zeros print(f"[warning] Padding zero action!") predicted_action_token_ids = np.concatenate( [ predicted_action_token_ids, np.zeros(action_token_num * self.action_chunk_size - predicted_action_token_ids.shape[0], dtype=np.longlong), ] ) predicted_action_token_ids = predicted_action_token_ids.reshape(-1, action_token_num) normalized_action_chunks = self.action_tokenizer.decode_token_ids_to_actions(predicted_action_token_ids) # Unnormalize actions if unnorm_key is None: print(f"🔥 unnorm_key {unnorm_key} is not in statistics, use next one") unnorm_key = next(self.statistics.keys()) action_norm_stats = self.statistics[unnorm_key]["action"] action_dim = len(action_norm_stats["q01"]) mask = np.array(action_norm_stats.get("mask", np.ones(action_dim)), dtype=bool) action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"]) actions = [] for normalized_actions in normalized_action_chunks: action = np.where( mask, 0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low, normalized_actions, ) actions.append(action) actions = np.stack(actions) return {"actions": actions, "action_ids": predicted_action_token_ids}