spatialvla-4b-mix-224-pt / configuration_spatialvla.py
delinqu's picture
Upload folder using huggingface_hub
367577f verified
# MIT License
# Copyright (c) 2025 IPEC at Shanghai AI Laboratory
# Permission is hereby granted, free of charge, to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND.
# Based on code licensed under the Apache License, Version 2.0 by Google Inc. and HuggingFace Inc. team (Copyright 2024).
# coding=utf-8
"""PaliGemmamodel configuration"""
import warnings
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers import CONFIG_MAPPING, AutoConfig
logger = logging.get_logger(__name__)
class SpatialVLAConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PaliGemmaForConditionalGeneration`]. It is used to instantiate an
PaliGemmamodel according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the PaliGemma-2B.
e.g. [paligemma-hf/paligemma-2b](https://huggingface.co/paligemma-hf/paligemma-2b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`PaliGemmaVisionConfig`, *optional*):
Custom vision config or dict
text_config (`Union[AutoConfig, dict]`, *optional*):
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
image_token_index (`int`, *optional*, defaults to 256000):
The image token index to encode the image prompt.
vocab_size (`int`, *optional*, defaults to 257152):
Vocabulary size of the PaliGemmamodel. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~PaliGemmaForConditionalGeneration`]
projection_dim (`int`, *optional*, defaults to 2048):
Dimension of the multimodal projection space.
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden layer of the Language model.
Example:
```python
>>> from transformers import PaliGemmaForConditionalGeneration, PaliGemmaConfig, SiglipVisionConfig, GemmaConfig
>>> # Initializing a Siglip-like vision config
>>> vision_config = SiglipVisionConfig()
>>> # Initializing a PaliGemma config
>>> text_config = GemmaConfig()
>>> # Initializing a PaliGemma paligemma-3b-224 style configuration
>>> configuration = PaliGemmaConfig(vision_config, text_config)
>>> # Initializing a model from the paligemma-3b-224 style configuration
>>> model = PaliGemmaForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "spatialvla"
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig, "vision_zoe_config": AutoConfig}
def __init__(
self,
vision_config=None,
text_config=None,
ignore_index=-100,
image_token_index=256000,
vocab_size=257152,
projection_dim=2048,
hidden_size=2048,
vision_zoe_config=None,
action_token_begin_idx=None,
spatial_token_num=259,
use_spatial_token=False,
ego3d_patch_reso=4,
n_freqs=8,
use_vision_zoe=True,
# wrap_lora=False,
**kwargs,
):
self._ignore_index = ignore_index
self.image_token_index = image_token_index
self._vocab_size = vocab_size
self.projection_dim = projection_dim
self.hidden_size = hidden_size
self.vision_config = vision_config
self.is_encoder_decoder = False
if isinstance(self.vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model"
)
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
self.vision_config = CONFIG_MAPPING["siglip_vision_model"](
intermediate_size=4096,
hidden_size=1152,
patch_size=14,
image_size=224,
num_hidden_layers=27,
num_attention_heads=16,
vocab_size=257152,
vision_use_head=False,
)
self.text_config = text_config
if isinstance(self.text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma2"
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
self.text_config = CONFIG_MAPPING["gemma2"](
hidden_size=2048,
num_hidden_layers=18,
intermediate_size=16384,
num_attention_heads=8,
num_key_value_heads=1,
is_encoder_decoder=False,
vocab_size=vocab_size,
)
self.text_config.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2
self.vision_config.projection_dim = projection_dim
# vision zoe config
self.vision_zoe_config = vision_zoe_config
if isinstance(self.vision_zoe_config, dict):
vision_zoe_config["model_type"] = vision_zoe_config["model_type"] if "model_type" in vision_zoe_config else "zoedepth"
self.vision_zoe_config = CONFIG_MAPPING[vision_zoe_config["model_type"]](**vision_zoe_config)
else:
print(f"🔥 init from default configurations ... {self.vision_zoe_config}")
# BUG: initializing zoe in default cause key error
# self.vision_zoe_config = CONFIG_MAPPING["zoedepth"]()
pass
# NOTE: additional attributes
self.action_token_begin_idx = action_token_begin_idx
self.spatial_token_num = spatial_token_num
self.use_spatial_token = use_spatial_token
self.ego3d_patch_reso = ego3d_patch_reso
self.n_freqs = n_freqs
self.use_vision_zoe = use_vision_zoe
# self.wrap_lora = wrap_lora
super().__init__(**kwargs)
@property
def ignore_index(self):
warnings.warn(
"The `ignore_index` attribute is deprecated and will be removed in v4.47.",
FutureWarning,
)
return self._ignore_index
@ignore_index.setter
def ignore_index(self, value):
self._ignore_index = value
def to_dict(self):
output = super().to_dict()
output.pop("_ignore_index", None)
return output