|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PaliGemmamodel configuration""" |
|
|
|
import warnings |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
from transformers import CONFIG_MAPPING, AutoConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class SpatialVLAConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`PaliGemmaForConditionalGeneration`]. It is used to instantiate an |
|
PaliGemmamodel according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the PaliGemma-2B. |
|
|
|
e.g. [paligemma-hf/paligemma-2b](https://huggingface.co/paligemma-hf/paligemma-2b) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vision_config (`PaliGemmaVisionConfig`, *optional*): |
|
Custom vision config or dict |
|
text_config (`Union[AutoConfig, dict]`, *optional*): |
|
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. |
|
ignore_index (`int`, *optional*, defaults to -100): |
|
The ignore index for the loss function. |
|
image_token_index (`int`, *optional*, defaults to 256000): |
|
The image token index to encode the image prompt. |
|
vocab_size (`int`, *optional*, defaults to 257152): |
|
Vocabulary size of the PaliGemmamodel. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`~PaliGemmaForConditionalGeneration`] |
|
projection_dim (`int`, *optional*, defaults to 2048): |
|
Dimension of the multimodal projection space. |
|
hidden_size (`int`, *optional*, defaults to 2048): |
|
Dimension of the hidden layer of the Language model. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import PaliGemmaForConditionalGeneration, PaliGemmaConfig, SiglipVisionConfig, GemmaConfig |
|
|
|
>>> # Initializing a Siglip-like vision config |
|
>>> vision_config = SiglipVisionConfig() |
|
|
|
>>> # Initializing a PaliGemma config |
|
>>> text_config = GemmaConfig() |
|
|
|
>>> # Initializing a PaliGemma paligemma-3b-224 style configuration |
|
>>> configuration = PaliGemmaConfig(vision_config, text_config) |
|
|
|
>>> # Initializing a model from the paligemma-3b-224 style configuration |
|
>>> model = PaliGemmaForConditionalGeneration(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "spatialvla" |
|
sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig, "vision_zoe_config": AutoConfig} |
|
|
|
def __init__( |
|
self, |
|
vision_config=None, |
|
text_config=None, |
|
ignore_index=-100, |
|
image_token_index=256000, |
|
vocab_size=257152, |
|
projection_dim=2048, |
|
hidden_size=2048, |
|
vision_zoe_config=None, |
|
action_token_begin_idx=None, |
|
spatial_token_num=259, |
|
use_spatial_token=False, |
|
ego3d_patch_reso=4, |
|
n_freqs=8, |
|
use_vision_zoe=True, |
|
|
|
**kwargs, |
|
): |
|
self._ignore_index = ignore_index |
|
self.image_token_index = image_token_index |
|
self._vocab_size = vocab_size |
|
self.projection_dim = projection_dim |
|
self.hidden_size = hidden_size |
|
self.vision_config = vision_config |
|
self.is_encoder_decoder = False |
|
|
|
if isinstance(self.vision_config, dict): |
|
vision_config["model_type"] = ( |
|
vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model" |
|
) |
|
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) |
|
elif vision_config is None: |
|
self.vision_config = CONFIG_MAPPING["siglip_vision_model"]( |
|
intermediate_size=4096, |
|
hidden_size=1152, |
|
patch_size=14, |
|
image_size=224, |
|
num_hidden_layers=27, |
|
num_attention_heads=16, |
|
vocab_size=257152, |
|
vision_use_head=False, |
|
) |
|
|
|
self.text_config = text_config |
|
if isinstance(self.text_config, dict): |
|
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma2" |
|
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) |
|
elif text_config is None: |
|
self.text_config = CONFIG_MAPPING["gemma2"]( |
|
hidden_size=2048, |
|
num_hidden_layers=18, |
|
intermediate_size=16384, |
|
num_attention_heads=8, |
|
num_key_value_heads=1, |
|
is_encoder_decoder=False, |
|
vocab_size=vocab_size, |
|
) |
|
self.text_config.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2 |
|
self.vision_config.projection_dim = projection_dim |
|
|
|
|
|
self.vision_zoe_config = vision_zoe_config |
|
if isinstance(self.vision_zoe_config, dict): |
|
vision_zoe_config["model_type"] = vision_zoe_config["model_type"] if "model_type" in vision_zoe_config else "zoedepth" |
|
self.vision_zoe_config = CONFIG_MAPPING[vision_zoe_config["model_type"]](**vision_zoe_config) |
|
else: |
|
print(f"🔥 init from default configurations ... {self.vision_zoe_config}") |
|
|
|
|
|
pass |
|
|
|
|
|
self.action_token_begin_idx = action_token_begin_idx |
|
self.spatial_token_num = spatial_token_num |
|
self.use_spatial_token = use_spatial_token |
|
self.ego3d_patch_reso = ego3d_patch_reso |
|
self.n_freqs = n_freqs |
|
self.use_vision_zoe = use_vision_zoe |
|
|
|
|
|
super().__init__(**kwargs) |
|
|
|
@property |
|
def ignore_index(self): |
|
warnings.warn( |
|
"The `ignore_index` attribute is deprecated and will be removed in v4.47.", |
|
FutureWarning, |
|
) |
|
return self._ignore_index |
|
|
|
@ignore_index.setter |
|
def ignore_index(self, value): |
|
self._ignore_index = value |
|
|
|
def to_dict(self): |
|
output = super().to_dict() |
|
output.pop("_ignore_index", None) |
|
return output |