--- language: en license: mit library_name: transformers tags: - image-to-text widget: - src: https://huggingface.co/IAMJB/interpret-cxr-impression-baseline/resolve/main/effusions-bibasal.jpg - src: https://huggingface.co/IAMJB/interpret-cxr-impression-baseline/resolve/main/Chest-X-ray-taken-on-2-nd-day-of-admission-in-the_Q320.jpg - src: https://huggingface.co/IAMJB/interpret-cxr-impression-baseline/resolve/main/effusions-bibasal.jpg --- [Evaluation on chexpert-plus](https://github.com/Stanford-AIMI/chexpert-plus) Usage: ```python import torch from PIL import Image from transformers import BertTokenizer, ViTImageProcessor, VisionEncoderDecoderModel, GenerationConfig import requests mode = "findings" # Model model = VisionEncoderDecoderModel.from_pretrained(f"IAMJB/chexpert-mimic-cxr-{mode}-baseline").eval() tokenizer = BertTokenizer.from_pretrained(f"IAMJB/chexpert-mimic-cxr-{mode}-baseline") image_processor = ViTImageProcessor.from_pretrained(f"IAMJB/chexpert-mimic-cxr-{mode}-baseline") # # Dataset generation_args = { "bos_token_id": model.config.bos_token_id, "eos_token_id": model.config.eos_token_id, "pad_token_id": model.config.pad_token_id, "num_return_sequences": 1, "max_length": 128, "use_cache": True, "beam_width": 2, } # # Inference refs = [] hyps = [] with torch.no_grad(): url = "https://huggingface.co/IAMJB/interpret-cxr-impression-baseline/resolve/main/effusions-bibasal.jpg" image = Image.open(requests.get(url, stream=True).raw) pixel_values = image_processor(image, return_tensors="pt").pixel_values # Generate predictions generated_ids = model.generate( pixel_values, generation_config=GenerationConfig( **{**generation_args, "decoder_start_token_id": tokenizer.cls_token_id}) ) generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) print(generated_texts) ```