update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,16 +78,16 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| No log | 4.17 | 250 | 1.
|
82 |
-
| 1.
|
83 |
-
| 1.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.9349593495934959
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.9468562874251497
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.9408702119747119
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9490662139219015
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.2730
|
47 |
+
- Precision: 0.9350
|
48 |
+
- Recall: 0.9469
|
49 |
+
- F1: 0.9409
|
50 |
+
- Accuracy: 0.9491
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 4.17 | 250 | 1.0147 | 0.7119 | 0.7807 | 0.7447 | 0.7963 |
|
82 |
+
| 1.3916 | 8.33 | 500 | 0.5211 | 0.8428 | 0.8705 | 0.8564 | 0.8786 |
|
83 |
+
| 1.3916 | 12.5 | 750 | 0.3842 | 0.8961 | 0.9169 | 0.9064 | 0.9181 |
|
84 |
+
| 0.3265 | 16.67 | 1000 | 0.3158 | 0.9225 | 0.9349 | 0.9286 | 0.9393 |
|
85 |
+
| 0.3265 | 20.83 | 1250 | 0.2874 | 0.9162 | 0.9334 | 0.9247 | 0.9414 |
|
86 |
+
| 0.139 | 25.0 | 1500 | 0.2738 | 0.9255 | 0.9394 | 0.9324 | 0.9461 |
|
87 |
+
| 0.139 | 29.17 | 1750 | 0.2774 | 0.9354 | 0.9431 | 0.9392 | 0.9491 |
|
88 |
+
| 0.0798 | 33.33 | 2000 | 0.2695 | 0.9342 | 0.9461 | 0.9401 | 0.9508 |
|
89 |
+
| 0.0798 | 37.5 | 2250 | 0.2759 | 0.9356 | 0.9461 | 0.9408 | 0.9495 |
|
90 |
+
| 0.0592 | 41.67 | 2500 | 0.2730 | 0.9350 | 0.9469 | 0.9409 | 0.9491 |
|
91 |
|
92 |
|
93 |
### Framework versions
|