Update README.md
Browse files
README.md
CHANGED
@@ -31,18 +31,17 @@ HiT-MiniLM-L12-WordNet is a HiT model trained on WordNet's subsumption (hypernym
|
|
31 |
- **Developed by:** [Yuan He](https://www.yuanhe.wiki/), Zhangdie Yuan, Jiaoyan Chen, and Ian Horrocks
|
32 |
- **Model type:** Hierarchy Transformer Encoder (HiT)
|
33 |
- **License:** Apache license 2.0
|
34 |
-
- **Hierarchy**: WordNet (
|
35 |
- **Training Dataset**: Download `wordnet-mixed.zip` from [Datasets for HiTs on Zenodo](https://zenodo.org/doi/10.5281/zenodo.10511042)
|
36 |
- **Pre-trained model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2)
|
37 |
-
- **Training Objectives**: Jointly optimised on *
|
38 |
|
39 |
### Model Versions
|
40 |
|
41 |
-
|
42 |
| **Version** | **Model Revision** | **Note** |
|
43 |
|------------|---------|----------|
|
44 |
-
|v1.0 (Random Negatives)| `main` or `v1-random-
|
45 |
-
|v1.0 (Hard Negatives)| `v1-hard-
|
46 |
|
47 |
|
48 |
### Model Sources
|
@@ -106,7 +105,8 @@ parent_norms = model.manifold.dist0(parent_entity_embeddings)
|
|
106 |
subsumption_scores = - (dists + centri_score_weight * (parent_norms - child_norms))
|
107 |
```
|
108 |
|
109 |
-
Training and evaluation scripts are available at [GitHub](https://github.com/KRR-Oxford/HierarchyTransformers).
|
|
|
110 |
Technical details are presented in the [paper](https://arxiv.org/abs/2401.11374).
|
111 |
|
112 |
|
@@ -125,7 +125,7 @@ HierarchyTransformer(
|
|
125 |
|
126 |
Preprint on arxiv: https://arxiv.org/abs/2401.11374.
|
127 |
|
128 |
-
*Yuan He, Zhangdie Yuan, Jiaoyan Chen, Ian Horrocks.* **Language Models as Hierarchy Encoders.**
|
129 |
|
130 |
```
|
131 |
@article{he2024language,
|
@@ -139,4 +139,4 @@ Preprint on arxiv: https://arxiv.org/abs/2401.11374.
|
|
139 |
|
140 |
## Model Card Contact
|
141 |
|
142 |
-
For any queries or feedback, please contact Yuan He (yuan.he
|
|
|
31 |
- **Developed by:** [Yuan He](https://www.yuanhe.wiki/), Zhangdie Yuan, Jiaoyan Chen, and Ian Horrocks
|
32 |
- **Model type:** Hierarchy Transformer Encoder (HiT)
|
33 |
- **License:** Apache license 2.0
|
34 |
+
- **Hierarchy**: WordNet's subsumption (hypernym) hierarchy of noun entities.
|
35 |
- **Training Dataset**: Download `wordnet-mixed.zip` from [Datasets for HiTs on Zenodo](https://zenodo.org/doi/10.5281/zenodo.10511042)
|
36 |
- **Pre-trained model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2)
|
37 |
+
- **Training Objectives**: Jointly optimised on *Hyperbolic Clustering* and *Hyperbolic Centripetal* losses (see definitions in the [paper](https://arxiv.org/abs/2401.11374))
|
38 |
|
39 |
### Model Versions
|
40 |
|
|
|
41 |
| **Version** | **Model Revision** | **Note** |
|
42 |
|------------|---------|----------|
|
43 |
+
|v1.0 (Random Negatives)| `main` or `v1-random-negatives`| The variant trained on random negatives, as detailed in the [paper](https://arxiv.org/abs/2401.11374).|
|
44 |
+
|v1.0 (Hard Negatives)| `v1-hard-negatives` | The variant trained on hard negatives, as detailed in the [paper](https://arxiv.org/abs/2401.11374). |
|
45 |
|
46 |
|
47 |
### Model Sources
|
|
|
105 |
subsumption_scores = - (dists + centri_score_weight * (parent_norms - child_norms))
|
106 |
```
|
107 |
|
108 |
+
Training and evaluation scripts are available at [GitHub](https://github.com/KRR-Oxford/HierarchyTransformers/tree/main/scripts). See `scripts/evaluate.py` for how we determine the hyperparameters on the validation set for subsumption prediction.
|
109 |
+
|
110 |
Technical details are presented in the [paper](https://arxiv.org/abs/2401.11374).
|
111 |
|
112 |
|
|
|
125 |
|
126 |
Preprint on arxiv: https://arxiv.org/abs/2401.11374.
|
127 |
|
128 |
+
*Yuan He, Zhangdie Yuan, Jiaoyan Chen, Ian Horrocks.* **Language Models as Hierarchy Encoders.** To Appear at NeurIPS 2024.
|
129 |
|
130 |
```
|
131 |
@article{he2024language,
|
|
|
139 |
|
140 |
## Model Card Contact
|
141 |
|
142 |
+
For any queries or feedback, please contact Yuan He (`yuan.he(at)cs.ox.ac.uk`).
|