lawhy commited on
Commit
15c13c4
·
verified ·
1 Parent(s): 5c877e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -31,18 +31,17 @@ HiT-MiniLM-L12-WordNet is a HiT model trained on WordNet's subsumption (hypernym
31
  - **Developed by:** [Yuan He](https://www.yuanhe.wiki/), Zhangdie Yuan, Jiaoyan Chen, and Ian Horrocks
32
  - **Model type:** Hierarchy Transformer Encoder (HiT)
33
  - **License:** Apache license 2.0
34
- - **Hierarchy**: WordNet (Noun)
35
  - **Training Dataset**: Download `wordnet-mixed.zip` from [Datasets for HiTs on Zenodo](https://zenodo.org/doi/10.5281/zenodo.10511042)
36
  - **Pre-trained model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2)
37
- - **Training Objectives**: Jointly optimised on *hyperbolic clustering* and *hyperbolic centripetal* losses
38
 
39
  ### Model Versions
40
 
41
-
42
  | **Version** | **Model Revision** | **Note** |
43
  |------------|---------|----------|
44
- |v1.0 (Random Negatives)| `main` or `v1-random-negative`| The variant trained on random negatives, as detailed in the [paper](https://arxiv.org/abs/2401.11374).|
45
- |v1.0 (Hard Negatives)| `v1-hard-negative` | The variant trained on hard negatives, as detailed in the [paper](https://arxiv.org/abs/2401.11374). |
46
 
47
 
48
  ### Model Sources
@@ -106,7 +105,8 @@ parent_norms = model.manifold.dist0(parent_entity_embeddings)
106
  subsumption_scores = - (dists + centri_score_weight * (parent_norms - child_norms))
107
  ```
108
 
109
- Training and evaluation scripts are available at [GitHub](https://github.com/KRR-Oxford/HierarchyTransformers).
 
110
  Technical details are presented in the [paper](https://arxiv.org/abs/2401.11374).
111
 
112
 
@@ -125,7 +125,7 @@ HierarchyTransformer(
125
 
126
  Preprint on arxiv: https://arxiv.org/abs/2401.11374.
127
 
128
- *Yuan He, Zhangdie Yuan, Jiaoyan Chen, Ian Horrocks.* **Language Models as Hierarchy Encoders.** arXiv preprint arXiv:2401.11374 (2024).
129
 
130
  ```
131
  @article{he2024language,
@@ -139,4 +139,4 @@ Preprint on arxiv: https://arxiv.org/abs/2401.11374.
139
 
140
  ## Model Card Contact
141
 
142
- For any queries or feedback, please contact Yuan He (yuan.he@cs.ox.ac.uk).
 
31
  - **Developed by:** [Yuan He](https://www.yuanhe.wiki/), Zhangdie Yuan, Jiaoyan Chen, and Ian Horrocks
32
  - **Model type:** Hierarchy Transformer Encoder (HiT)
33
  - **License:** Apache license 2.0
34
+ - **Hierarchy**: WordNet's subsumption (hypernym) hierarchy of noun entities.
35
  - **Training Dataset**: Download `wordnet-mixed.zip` from [Datasets for HiTs on Zenodo](https://zenodo.org/doi/10.5281/zenodo.10511042)
36
  - **Pre-trained model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2)
37
+ - **Training Objectives**: Jointly optimised on *Hyperbolic Clustering* and *Hyperbolic Centripetal* losses (see definitions in the [paper](https://arxiv.org/abs/2401.11374))
38
 
39
  ### Model Versions
40
 
 
41
  | **Version** | **Model Revision** | **Note** |
42
  |------------|---------|----------|
43
+ |v1.0 (Random Negatives)| `main` or `v1-random-negatives`| The variant trained on random negatives, as detailed in the [paper](https://arxiv.org/abs/2401.11374).|
44
+ |v1.0 (Hard Negatives)| `v1-hard-negatives` | The variant trained on hard negatives, as detailed in the [paper](https://arxiv.org/abs/2401.11374). |
45
 
46
 
47
  ### Model Sources
 
105
  subsumption_scores = - (dists + centri_score_weight * (parent_norms - child_norms))
106
  ```
107
 
108
+ Training and evaluation scripts are available at [GitHub](https://github.com/KRR-Oxford/HierarchyTransformers/tree/main/scripts). See `scripts/evaluate.py` for how we determine the hyperparameters on the validation set for subsumption prediction.
109
+
110
  Technical details are presented in the [paper](https://arxiv.org/abs/2401.11374).
111
 
112
 
 
125
 
126
  Preprint on arxiv: https://arxiv.org/abs/2401.11374.
127
 
128
+ *Yuan He, Zhangdie Yuan, Jiaoyan Chen, Ian Horrocks.* **Language Models as Hierarchy Encoders.** To Appear at NeurIPS 2024.
129
 
130
  ```
131
  @article{he2024language,
 
139
 
140
  ## Model Card Contact
141
 
142
+ For any queries or feedback, please contact Yuan He (`yuan.he(at)cs.ox.ac.uk`).