File size: 2,096 Bytes
9081668
 
 
3b2e653
 
 
 
 
49793c7
3b2e653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49793c7
3b2e653
 
49793c7
 
3b2e653
 
49793c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2e653
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
license: apache-2.0
---

[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Transformers library and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading and fine-tuning on single- and multi-HPU settings for different downstream tasks.
Learn more about how to take advantage of the power of Habana HPUs to train Transformers models at [hf.co/Habana](https://huggingface.co/Habana).


## RoBERTa Base model HPU configuration

This model contains just the `GaudiConfig` file for running the [roberta-base](https://huggingface.co/roberta-base) model on Habana's Gaudi processors (HPU).

**This model contains no model weights, only a GaudiConfig.**

This enables to specify:
- `use_habana_mixed_precision`: whether to use Habana Mixed Precision (HMP)
  - `hmp_opt_level`: optimization level for HMP, see [here](https://docs.habana.ai/en/latest/PyTorch/PyTorch_User_Guide/PT_Mixed_Precision.html#configuration-options) for a detailed explanation
  - `hmp_bf16_ops`: list of operators that should run in bf16
  - `hmp_fp32_ops`: list of operators that should run in fp32
  - `hmp_is_verbose`: verbosity
 - `use_fused_adam`: whether to use Habana's custom AdamW implementation
 - `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator


## Usage

The model is instantiated the same way as in the Transformers library.
The only difference is that the Gaudi configuration has to be loaded and provided to the trainer:

```
from optimum.habana import GaudiConfig, GaudiTrainer, GaudiTrainingArguments
from transformers import RobertaModel, RobertaTokenizer


tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
model = RobertaModel.from_pretrained("roberta-base")
gaudi_config = GaudiConfig.from_pretrained("Habana/roberta-base")
args = GaudiTrainingArguments(
    output_dir="/tmp/output_dir",
    use_habana=True,
    use_lazy_mode=True,
)

trainer = GaudiTrainer(
    model=model,
    gaudi_config=gaudi_config,
    args=args,
    tokenizer=tokenizer,
)
trainer.train()
```