File size: 3,003 Bytes
e5f0ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
license: apache-2.0
base_model: google-bert/bert-large-cased
tags:
- generated_from_trainer
datasets:
- lener_br
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-large-cased-finetuned-ner-lenerBr
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: lener_br
      type: lener_br
      config: lener_br
      split: validation
      args: lener_br
    metrics:
    - name: Precision
      type: precision
      value: 0.8045846203869289
    - name: Recall
      type: recall
      value: 0.82981220657277
    - name: F1
      type: f1
      value: 0.8170037144036318
    - name: Accuracy
      type: accuracy
      value: 0.9644917654463443
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-large-cased-finetuned-ner-lenerBr

This model is a fine-tuned version of [google-bert/bert-large-cased](https://huggingface.co/google-bert/bert-large-cased) on the lener_br dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Precision: 0.8046
- Recall: 0.8298
- F1: 0.8170
- Accuracy: 0.9645

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.9974 | 244  | nan             | 0.6627    | 0.7490 | 0.7032 | 0.9402   |
| No log        | 1.9990 | 489  | nan             | 0.7002    | 0.8005 | 0.7470 | 0.9503   |
| 0.1592        | 2.9964 | 733  | nan             | 0.7482    | 0.8080 | 0.7769 | 0.9545   |
| 0.1592        | 3.9980 | 978  | nan             | 0.7749    | 0.8166 | 0.7952 | 0.9614   |
| 0.0279        | 4.9995 | 1223 | nan             | 0.7845    | 0.7973 | 0.7909 | 0.9634   |
| 0.0279        | 5.9969 | 1467 | nan             | 0.7840    | 0.8203 | 0.8017 | 0.9622   |
| 0.0122        | 6.9985 | 1712 | nan             | 0.7989    | 0.8224 | 0.8105 | 0.9638   |
| 0.0122        | 8.0    | 1957 | nan             | 0.7977    | 0.8286 | 0.8129 | 0.9634   |
| 0.007         | 8.9974 | 2201 | nan             | 0.7947    | 0.8265 | 0.8103 | 0.9643   |
| 0.007         | 9.9745 | 2440 | nan             | 0.8046    | 0.8298 | 0.8170 | 0.9645   |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1