Commit
·
aa277b6
1
Parent(s):
dd18d3c
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
model-index:
|
8 |
+
- name: git-base-pokemon
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# git-base-pokemon
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the imagefolder dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1817
|
20 |
+
- Wer Score: 9.0938
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 1
|
41 |
+
- eval_batch_size: 1
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 2
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 50
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer Score |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|
|
53 |
+
| 7.3974 | 0.7 | 50 | 4.5248 | 4.5234 |
|
54 |
+
| 2.2794 | 1.4 | 100 | 0.4021 | 5.1680 |
|
55 |
+
| 0.1697 | 2.1 | 150 | 0.1398 | 1.5039 |
|
56 |
+
| 0.0816 | 2.8 | 200 | 0.1458 | 9.9570 |
|
57 |
+
| 0.0556 | 3.5 | 250 | 0.1417 | 2.5234 |
|
58 |
+
| 0.043 | 4.2 | 300 | 0.1448 | 12.8086 |
|
59 |
+
| 0.0285 | 4.9 | 350 | 0.1469 | 7.3867 |
|
60 |
+
| 0.021 | 5.59 | 400 | 0.1505 | 13.0312 |
|
61 |
+
| 0.0205 | 6.29 | 450 | 0.1499 | 6.3281 |
|
62 |
+
| 0.0179 | 6.99 | 500 | 0.1527 | 13.0234 |
|
63 |
+
| 0.0157 | 7.69 | 550 | 0.1552 | 6.3047 |
|
64 |
+
| 0.015 | 8.39 | 600 | 0.1571 | 6.7656 |
|
65 |
+
| 0.015 | 9.09 | 650 | 0.1579 | 10.2305 |
|
66 |
+
| 0.0137 | 9.79 | 700 | 0.1585 | 11.4219 |
|
67 |
+
| 0.0132 | 10.49 | 750 | 0.1598 | 5.8320 |
|
68 |
+
| 0.0132 | 11.19 | 800 | 0.1591 | 12.0508 |
|
69 |
+
| 0.013 | 11.89 | 850 | 0.1612 | 7.9492 |
|
70 |
+
| 0.0117 | 12.59 | 900 | 0.1621 | 8.1758 |
|
71 |
+
| 0.0123 | 13.29 | 950 | 0.1632 | 12.9961 |
|
72 |
+
| 0.0125 | 13.99 | 1000 | 0.1613 | 10.2031 |
|
73 |
+
| 0.0116 | 14.69 | 1050 | 0.1642 | 5.7930 |
|
74 |
+
| 0.0112 | 15.38 | 1100 | 0.1636 | 6.1719 |
|
75 |
+
| 0.0112 | 16.08 | 1150 | 0.1652 | 7.2422 |
|
76 |
+
| 0.0107 | 16.78 | 1200 | 0.1644 | 12.9961 |
|
77 |
+
| 0.0108 | 17.48 | 1250 | 0.1661 | 5.0117 |
|
78 |
+
| 0.0109 | 18.18 | 1300 | 0.1658 | 7.3242 |
|
79 |
+
| 0.0108 | 18.88 | 1350 | 0.1691 | 6.0547 |
|
80 |
+
| 0.0101 | 19.58 | 1400 | 0.1690 | 6.9141 |
|
81 |
+
| 0.0103 | 20.28 | 1450 | 0.1692 | 7.1680 |
|
82 |
+
| 0.0107 | 20.98 | 1500 | 0.1702 | 12.3281 |
|
83 |
+
| 0.0099 | 21.68 | 1550 | 0.1708 | 10.75 |
|
84 |
+
| 0.0103 | 22.38 | 1600 | 0.1714 | 9.5586 |
|
85 |
+
| 0.0101 | 23.08 | 1650 | 0.1713 | 12.9805 |
|
86 |
+
| 0.0098 | 23.78 | 1700 | 0.1712 | 11.4883 |
|
87 |
+
| 0.0095 | 24.48 | 1750 | 0.1711 | 9.3320 |
|
88 |
+
| 0.0096 | 25.17 | 1800 | 0.1738 | 8.6523 |
|
89 |
+
| 0.0097 | 25.87 | 1850 | 0.1717 | 11.5078 |
|
90 |
+
| 0.0091 | 26.57 | 1900 | 0.1735 | 7.9570 |
|
91 |
+
| 0.0092 | 27.27 | 1950 | 0.1729 | 9.8242 |
|
92 |
+
| 0.0093 | 27.97 | 2000 | 0.1721 | 10.5078 |
|
93 |
+
| 0.0087 | 28.67 | 2050 | 0.1732 | 9.3906 |
|
94 |
+
| 0.009 | 29.37 | 2100 | 0.1760 | 8.0664 |
|
95 |
+
| 0.009 | 30.07 | 2150 | 0.1769 | 10.5312 |
|
96 |
+
| 0.0086 | 30.77 | 2200 | 0.1743 | 10.8555 |
|
97 |
+
| 0.0087 | 31.47 | 2250 | 0.1772 | 10.2188 |
|
98 |
+
| 0.0089 | 32.17 | 2300 | 0.1757 | 11.6016 |
|
99 |
+
| 0.0088 | 32.87 | 2350 | 0.1765 | 8.9297 |
|
100 |
+
| 0.0082 | 33.57 | 2400 | 0.1754 | 9.6484 |
|
101 |
+
| 0.0082 | 34.27 | 2450 | 0.1770 | 12.3711 |
|
102 |
+
| 0.0084 | 34.97 | 2500 | 0.1761 | 10.1523 |
|
103 |
+
| 0.0076 | 35.66 | 2550 | 0.1774 | 9.1055 |
|
104 |
+
| 0.0077 | 36.36 | 2600 | 0.1788 | 8.7852 |
|
105 |
+
| 0.0079 | 37.06 | 2650 | 0.1782 | 11.8086 |
|
106 |
+
| 0.0071 | 37.76 | 2700 | 0.1784 | 10.5234 |
|
107 |
+
| 0.0075 | 38.46 | 2750 | 0.1789 | 8.8828 |
|
108 |
+
| 0.0072 | 39.16 | 2800 | 0.1796 | 8.5664 |
|
109 |
+
| 0.0071 | 39.86 | 2850 | 0.1804 | 9.5391 |
|
110 |
+
| 0.0069 | 40.56 | 2900 | 0.1796 | 9.4062 |
|
111 |
+
| 0.0068 | 41.26 | 2950 | 0.1797 | 8.9883 |
|
112 |
+
| 0.0067 | 41.96 | 3000 | 0.1809 | 10.5273 |
|
113 |
+
| 0.0062 | 42.66 | 3050 | 0.1801 | 10.4531 |
|
114 |
+
| 0.0062 | 43.36 | 3100 | 0.1803 | 7.2188 |
|
115 |
+
| 0.0063 | 44.06 | 3150 | 0.1808 | 8.7930 |
|
116 |
+
| 0.0058 | 44.76 | 3200 | 0.1804 | 10.5156 |
|
117 |
+
| 0.0057 | 45.45 | 3250 | 0.1807 | 11.1328 |
|
118 |
+
| 0.0059 | 46.15 | 3300 | 0.1812 | 8.6875 |
|
119 |
+
| 0.0055 | 46.85 | 3350 | 0.1811 | 10.2773 |
|
120 |
+
| 0.0053 | 47.55 | 3400 | 0.1814 | 10.0391 |
|
121 |
+
| 0.0054 | 48.25 | 3450 | 0.1817 | 8.5391 |
|
122 |
+
| 0.0053 | 48.95 | 3500 | 0.1818 | 8.9688 |
|
123 |
+
| 0.005 | 49.65 | 3550 | 0.1817 | 9.0938 |
|
124 |
+
|
125 |
+
|
126 |
+
### Framework versions
|
127 |
+
|
128 |
+
- Transformers 4.30.2
|
129 |
+
- Pytorch 2.0.1+cu118
|
130 |
+
- Datasets 2.13.1
|
131 |
+
- Tokenizers 0.13.3
|