Upload folder using huggingface_hub
Browse files- README.md +96 -0
- assets/logo.jpg +0 -0
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "en"
|
4 |
+
tags:
|
5 |
+
- video
|
6 |
+
license: apache-2.0
|
7 |
+
pipeline_tag: text-to-video
|
8 |
+
library_name: diffusers
|
9 |
+
---
|
10 |
+
|
11 |
+
<p align="center">
|
12 |
+
<img src="assets/logo.jpg" height=30>
|
13 |
+
</p>
|
14 |
+
|
15 |
+
# FastMochi Model Card
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
FastMochi is an accelerated [Mochi](https://huggingface.co/genmo/mochi-1-preview) model. It can sample high quality videos with 8 diffusion steps. That brings around 8X speed up compared to the original Mochu with 64 steps.
|
20 |
+
|
21 |
+
- **Developed by**: [Hao AI Lab](https://hao-ai-lab.github.io/)
|
22 |
+
- **License**: Apache-2.0
|
23 |
+
- **Distilled from**: [Mochi](https://huggingface.co/genmo/mochi-1-preview)
|
24 |
+
- **Github Repository**: https://github.com/hao-ai-lab/FastVideo
|
25 |
+
|
26 |
+
## Usage
|
27 |
+
|
28 |
+
- Clone [Fastvideo](https://github.com/hao-ai-lab/FastVideo) repository and follow the inference instructions in the README.
|
29 |
+
- You can also run FastMochi using the official [Mochi repository](https://github.com/Tencent/HunyuanVideo) with the script below and this [compatible weight](https://huggingface.co/FastVideo/FastMochi).
|
30 |
+
|
31 |
+
<details>
|
32 |
+
<summary>Code</summary>
|
33 |
+
|
34 |
+
```python
|
35 |
+
from genmo.mochi_preview.pipelines import (
|
36 |
+
DecoderModelFactory,
|
37 |
+
DitModelFactory,
|
38 |
+
MochiMultiGPUPipeline,
|
39 |
+
T5ModelFactory,
|
40 |
+
linear_quadratic_schedule,
|
41 |
+
)
|
42 |
+
from genmo.lib.utils import save_video
|
43 |
+
import os
|
44 |
+
|
45 |
+
with open("prompt.txt", "r") as f:
|
46 |
+
prompts = [line.rstrip() for line in f]
|
47 |
+
|
48 |
+
pipeline = MochiMultiGPUPipeline(
|
49 |
+
text_encoder_factory=T5ModelFactory(),
|
50 |
+
world_size=4,
|
51 |
+
dit_factory=DitModelFactory(
|
52 |
+
model_path=f"weights/dit.safetensors", model_dtype="bf16"
|
53 |
+
),
|
54 |
+
decoder_factory=DecoderModelFactory(
|
55 |
+
model_path=f"weights/decoder.safetensors",
|
56 |
+
),
|
57 |
+
)
|
58 |
+
# read prompt line by line from prompt.txt
|
59 |
+
|
60 |
+
|
61 |
+
output_dir = "outputs"
|
62 |
+
os.makedirs(output_dir, exist_ok=True)
|
63 |
+
for i, prompt in enumerate(prompts):
|
64 |
+
video = pipeline(
|
65 |
+
height=480,
|
66 |
+
width=848,
|
67 |
+
num_frames=163,
|
68 |
+
num_inference_steps=8,
|
69 |
+
sigma_schedule=linear_quadratic_schedule(8, 0.1, 6),
|
70 |
+
cfg_schedule=[1.5] * 8,
|
71 |
+
batch_cfg=False,
|
72 |
+
prompt=prompt,
|
73 |
+
negative_prompt="",
|
74 |
+
seed=12345,
|
75 |
+
)[0]
|
76 |
+
save_video(video, f"{output_dir}/output_{i}.mp4")
|
77 |
+
```
|
78 |
+
|
79 |
+
</details>
|
80 |
+
|
81 |
+
|
82 |
+
## Training details
|
83 |
+
|
84 |
+
FastMochi is consistency distillated on the [MixKit](https://huggingface.co/datasets/LanguageBind/Open-Sora-Plan-v1.1.0/tree/main) dataset with the following hyperparamters:
|
85 |
+
- Batch size: 32
|
86 |
+
- Resulotion: 480X848
|
87 |
+
- Num of frames: 169
|
88 |
+
- Train steps: 128
|
89 |
+
- GPUs: 16
|
90 |
+
- LR: 1e-6
|
91 |
+
- Loss: huber
|
92 |
+
|
93 |
+
## Evaluation
|
94 |
+
We provide some qualitative comparison between FastMochi 8 step inference v.s. the original Mochi with 8 step inference:
|
95 |
+
|
96 |
+
|
assets/logo.jpg
ADDED
![]() |