Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 238.90 +/- 54.38
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f599b1013f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f599b101480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f599b101510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f599b1015a0>", "_build": "<function ActorCriticPolicy._build at 0x7f599b101630>", "forward": "<function ActorCriticPolicy.forward at 0x7f599b1016c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f599b101750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f599b1017e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f599b101870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f599b101900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f599b101990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f599b101a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f599bfa3d40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732045297376479743, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAADopTsHp7I/csMiPqXhgL7lM7E5qHopPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBQbDhtLtiMAWyUTQIBjAF0lEdAms3l18stkHV9lChoBkdAcnbNTcZccGgHTTcBaAhHQJrPjGza9K51fZQoaAZHQHCMNhuwX69oB01OAWgIR0Ca0ouJUHY6dX2UKGgGR0BtXc3IdU83aAdNAAFoCEdAmtPsDwH7g3V9lChoBkdAb7BFQ2uPm2gHTQkBaAhHQJrVUe6qbSZ1fZQoaAZHQHEGpA2Q4jtoB00MAWgIR0Ca1tzAvcrRdX2UKGgGR0BwDxrULDyfaAdNXAFoCEdAmtrK1kUbk3V9lChoBkdAb9V15B1LamgHTQ0BaAhHQJrcujYZl4F1fZQoaAZHQHB3+pOvdM1oB00sAWgIR0Ca3w/0/W1/dX2UKGgGR0Bw1b863iJgaAdNPQFoCEdAmuIrjo6jnHV9lChoBkdAcQbimEXcg2gHTSsBaAhHQJrjy26TW5J1fZQoaAZHQG/HFFUhmoRoB00kAWgIR0Ca5VFHavicdX2UKGgGR0AkQLtNSIgvaAdLkWgIR0Ca5hcNpdrwdX2UKGgGR0BBvuwxFiKBaAdLw2gIR0Ca5yYx+KCQdX2UKGgGR0BAz/iPyTY/aAdLxWgIR0Ca6VloUSIydX2UKGgGR0BibLOPeYUnaAdN6ANoCEdAmu/vuPV/c3V9lChoBkdAcCyqUNayKWgHTZEBaAhHQJryCcx0uDl1fZQoaAZHQG8Gk3bVSXNoB00AAWgIR0Ca82mknCwbdX2UKGgGR0BJd8I7eVLSaAdLo2gIR0Ca9E4pMHrydX2UKGgGR0Bt5El9jPOZaAdNPwFoCEdAmvcwFTvRZ3V9lChoBkdAcRMDfWMCLmgHTQcBaAhHQJr4mPgeii91fZQoaAZHQEtShJRO1v5oB0vNaAhHQJr5sT4+KTB1fZQoaAZHQHGMeQp4KQdoB00rAWgIR0Ca/Hv2GqPwdX2UKGgGR0BwI81Muez2aAdNFQFoCEdAmv4Ar6LwWnV9lChoBkdAcgG3++/QB2gHTQEBaAhHQJr/Z15jYqZ1fZQoaAZHQHF/LlFMIu5oB000AWgIR0CbAQL0z0pWdX2UKGgGR0Bg8ulj3EhraAdN6ANoCEdAmwepJ5E+gXV9lChoBkdAbpvvNu+AVmgHTRcDaAhHQJsOpXyRSxZ1fZQoaAZHQHBwB+SbH6xoB00CAWgIR0CbEKUJOWSmdX2UKGgGR0BxdL1RLsa9aAdNFAFoCEdAmxO/kFOfunV9lChoBkdAcSDLIxQBP2gHTVYBaAhHQJsVlvVEuxt1fZQoaAZHQHH+7Y02tMhoB00pAWgIR0CbF0T72tdSdX2UKGgGR0BuJjoIOYplaAdNagFoCEdAmxppdv863nV9lChoBkdAcE1U+LWI42gHTWIBaAhHQJscX5SFXaJ1fZQoaAZHQHBFKgdwNspoB01hAWgIR0CbHjr8zhxYdX2UKGgGR0BxODc6/7BPaAdNSQFoCEdAmyFI2fkFOnV9lChoBkdAcbL9eyAxz2gHS/ZoCEdAmyKb6ciGFnV9lChoBkdAcFbU9IPK+2gHTSYBaAhHQJskQVVPva11fZQoaAZHQHAozwx33YdoB0v5aAhHQJsllP2wmmd1fZQoaAZHQHCvDKgZjx1oB00LAWgIR0CbKDKq4pc5dX2UKGgGR0Bu9vrv9cbBaAdNGAFoCEdAmymxFiKBNHV9lChoBkdAb1QJPZZjhGgHTUIBaAhHQJsraZVn27F1fZQoaAZHQHGoN8NQTEloB00tAWgIR0CbLjOqvNeMdX2UKGgGR0BFIWbPQfITaAdLomgIR0CbLxgA6uGLdX2UKGgGR0Bx7JGqgh8qaAdNfAFoCEdAmzEj4QBgeHV9lChoBkdAcCV3eN1hcGgHTTUBaAhHQJsyw2itaIN1fZQoaAZHQHJdwPuogmtoB00fAWgIR0CbNYBbOeJ6dX2UKGgGR0BwT9s+FDfFaAdNMgFoCEdAmzcdroGIK3V9lChoBkdAcHqiSJTESGgHTQMBaAhHQJs4i/1xsEd1fZQoaAZHQHGbp6QeV9poB00IAWgIR0CbOfWdVea8dX2UKGgGR0BJtxoqTbFkaAdNEAFoCEdAmz1svM8oyHV9lChoBkdAbq2hmoR7JGgHTSgBaAhHQJs/grQPZqV1fZQoaAZHQHAb2iYb83xoB00xAWgIR0CbQdFjNIK/dX2UKGgGR0BxWs8EFGG3aAdNAAFoCEdAm0U/X9R77nV9lChoBkdAcV+RyOq//WgHTUYBaAhHQJtHBVENOM51fZQoaAZHQG/Qn7pFCsxoB01XAWgIR0CbSN6xxDLKdX2UKGgGR0BwS+h4+r2haAdNWwFoCEdAm0v0VrRBvHV9lChoBkdAY+7aQFLWZ2gHTegDaAhHQJtSl57gKnh1fZQoaAZHQG5lcbR4QjFoB00cAWgIR0CbVB3dbgTAdX2UKGgGR0BrcJc5bQkYaAdNbwFoCEdAm1YUgB91EHV9lChoBkdAcID6FM7EHmgHTQIBaAhHQJtXa9Htnf51fZQoaAZHQHAYwxWT5ftoB004AWgIR0CbWkW7e2uxdX2UKGgGR0BxkHlLeyiVaAdL8mgIR0CbW5CGvfTDdX2UKGgGR0ByJVhiLEUCaAdNFwFoCEdAm10PoJRfnnV9lChoBkdAchp8e0XxfGgHTZkBaAhHQJtgdFBppN91fZQoaAZHQHM6JDVpblloB00tAWgIR0CbYh0/nnuBdX2UKGgGR0Bwu/Ov+wTuaAdNRgFoCEdAm2PYFFDv3XV9lChoBkdAbU04PwuuimgHTSwBaAhHQJtmlVWCEpR1fZQoaAZHQHBlws5GSZBoB00WAWgIR0CbaBxd6cAjdX2UKGgGR0Bx88COmzjWaAdNpgFoCEdAm2ptNBWxQnV9lChoBkdAb+ygr6LwWmgHTUcBaAhHQJtthRjz7Mx1fZQoaAZHQG0W2Af+0gNoB008AWgIR0Cbb8StNi6QdX2UKGgGR0BzCffixVyWaAdNDAFoCEdAm3GPvBrN4nV9lChoBkdAXbF/PPcBVGgHTegDaAhHQJt58qoZQ551fZQoaAZHQGPTRQ79ycVoB03oA2gIR0CbgJkl/pdKdX2UKGgGR0BtNa7btZ3caAdNfwFoCEdAm4Krx3FDOXV9lChoBkdASy533YcvNGgHS79oCEdAm4TdBv73wnV9lChoBkdAcBGLn9vS+mgHTUQBaAhHQJuGm0BwMph1fZQoaAZHQHBPv2oNutRoB02EAWgIR0CbiK+TeO4odX2UKGgGR0BwQIAn2IweaAdNEgFoCEdAm4tJiqhlDnV9lChoBkdAbf5L5hz/62gHTW8BaAhHQJuNReOXE611fZQoaAZHQHE+Vx4ptrNoB00pAWgIR0CbjuD7655JdX2UKGgGR0Bu6CpaRp1zaAdNJQFoCEdAm5CLAk9lmXV9lChoBkdAcbZ/6wdKd2gHTT4BaAhHQJuTY8V58jR1fZQoaAZHQHBOoBvJiiJoB00LAWgIR0CblNUfxMFmdX2UKGgGR0Bx7K/WUbDNaAdNIAFoCEdAm5ZgE+xGD3V9lChoBkdAYZeH0se4kWgHTegDaAhHQJuc/3g1m8N1fZQoaAZHQHFu9f9gndBoB00+AWgIR0CboBQRwqAjdX2UKGgGR0BwuUn5SFXaaAdNHwFoCEdAm6ILtVrAQHV9lChoBkdAY8cse4kNWmgHTegDaAhHQJuqzXwsoUl1fZQoaAZHQG7LddeIEbJoB00JAWgIR0CbrEb212JSdX2UKGgGR0BxtWuDBdleaAdNeQFoCEdAm695nxri2nV9lChoBkdAcBR7AtWdVmgHTRgBaAhHQJuxClGgBcR1fZQoaAZHQFz2N34bjtJoB03oA2gIR0Cbt7Jbt7a7dX2UKGgGR0Bv0j/KhcqwaAdNZAFoCEdAm7mqGpMpPXV9lChoBkdAa7uOU+s5n2gHTTEBaAhHQJu7SAy2x6h1fZQoaAZHQHDBfTLGJepoB01cAWgIR0CbvlfTTfBOdX2UKGgGR0Bxz+7SRbKSaAdL5GgIR0Cbv5HUc4o7dX2UKGgGR0BvfNtALRa5aAdL+mgIR0CbwPMcIZ62dX2UKGgGR0BwXt+Vkc0caAdNHAFoCEdAm8J4PXkHU3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQ4v5vXXaVPOxV7zGMJGkVEowDaW5jlIoRIzXSXmmWLPDeasWYUym6gAB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVoQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQMjnf0DIPEvTCMTLh7gbpE4wDaW5jlIoQ+WK5afUVUJ5KW+ugAsWPdHWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylEqdsH8OdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff13c5ac7665b2ca9ad24697dc5da8c99fb2bcdf74d8b1244544a42272ddde91
|
3 |
+
size 147902
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f599b1013f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f599b101480>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f599b101510>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f599b1015a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f599b101630>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f599b1016c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f599b101750>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f599b1017e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f599b101870>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f599b101900>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f599b101990>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f599b101a20>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f599bfa3d40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1732045297376479743,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAADopTsHp7I/csMiPqXhgL7lM7E5qHopPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBQbDhtLtiMAWyUTQIBjAF0lEdAms3l18stkHV9lChoBkdAcnbNTcZccGgHTTcBaAhHQJrPjGza9K51fZQoaAZHQHCMNhuwX69oB01OAWgIR0Ca0ouJUHY6dX2UKGgGR0BtXc3IdU83aAdNAAFoCEdAmtPsDwH7g3V9lChoBkdAb7BFQ2uPm2gHTQkBaAhHQJrVUe6qbSZ1fZQoaAZHQHEGpA2Q4jtoB00MAWgIR0Ca1tzAvcrRdX2UKGgGR0BwDxrULDyfaAdNXAFoCEdAmtrK1kUbk3V9lChoBkdAb9V15B1LamgHTQ0BaAhHQJrcujYZl4F1fZQoaAZHQHB3+pOvdM1oB00sAWgIR0Ca3w/0/W1/dX2UKGgGR0Bw1b863iJgaAdNPQFoCEdAmuIrjo6jnHV9lChoBkdAcQbimEXcg2gHTSsBaAhHQJrjy26TW5J1fZQoaAZHQG/HFFUhmoRoB00kAWgIR0Ca5VFHavicdX2UKGgGR0AkQLtNSIgvaAdLkWgIR0Ca5hcNpdrwdX2UKGgGR0BBvuwxFiKBaAdLw2gIR0Ca5yYx+KCQdX2UKGgGR0BAz/iPyTY/aAdLxWgIR0Ca6VloUSIydX2UKGgGR0BibLOPeYUnaAdN6ANoCEdAmu/vuPV/c3V9lChoBkdAcCyqUNayKWgHTZEBaAhHQJryCcx0uDl1fZQoaAZHQG8Gk3bVSXNoB00AAWgIR0Ca82mknCwbdX2UKGgGR0BJd8I7eVLSaAdLo2gIR0Ca9E4pMHrydX2UKGgGR0Bt5El9jPOZaAdNPwFoCEdAmvcwFTvRZ3V9lChoBkdAcRMDfWMCLmgHTQcBaAhHQJr4mPgeii91fZQoaAZHQEtShJRO1v5oB0vNaAhHQJr5sT4+KTB1fZQoaAZHQHGMeQp4KQdoB00rAWgIR0Ca/Hv2GqPwdX2UKGgGR0BwI81Muez2aAdNFQFoCEdAmv4Ar6LwWnV9lChoBkdAcgG3++/QB2gHTQEBaAhHQJr/Z15jYqZ1fZQoaAZHQHF/LlFMIu5oB000AWgIR0CbAQL0z0pWdX2UKGgGR0Bg8ulj3EhraAdN6ANoCEdAmwepJ5E+gXV9lChoBkdAbpvvNu+AVmgHTRcDaAhHQJsOpXyRSxZ1fZQoaAZHQHBwB+SbH6xoB00CAWgIR0CbEKUJOWSmdX2UKGgGR0BxdL1RLsa9aAdNFAFoCEdAmxO/kFOfunV9lChoBkdAcSDLIxQBP2gHTVYBaAhHQJsVlvVEuxt1fZQoaAZHQHH+7Y02tMhoB00pAWgIR0CbF0T72tdSdX2UKGgGR0BuJjoIOYplaAdNagFoCEdAmxppdv863nV9lChoBkdAcE1U+LWI42gHTWIBaAhHQJscX5SFXaJ1fZQoaAZHQHBFKgdwNspoB01hAWgIR0CbHjr8zhxYdX2UKGgGR0BxODc6/7BPaAdNSQFoCEdAmyFI2fkFOnV9lChoBkdAcbL9eyAxz2gHS/ZoCEdAmyKb6ciGFnV9lChoBkdAcFbU9IPK+2gHTSYBaAhHQJskQVVPva11fZQoaAZHQHAozwx33YdoB0v5aAhHQJsllP2wmmd1fZQoaAZHQHCvDKgZjx1oB00LAWgIR0CbKDKq4pc5dX2UKGgGR0Bu9vrv9cbBaAdNGAFoCEdAmymxFiKBNHV9lChoBkdAb1QJPZZjhGgHTUIBaAhHQJsraZVn27F1fZQoaAZHQHGoN8NQTEloB00tAWgIR0CbLjOqvNeMdX2UKGgGR0BFIWbPQfITaAdLomgIR0CbLxgA6uGLdX2UKGgGR0Bx7JGqgh8qaAdNfAFoCEdAmzEj4QBgeHV9lChoBkdAcCV3eN1hcGgHTTUBaAhHQJsyw2itaIN1fZQoaAZHQHJdwPuogmtoB00fAWgIR0CbNYBbOeJ6dX2UKGgGR0BwT9s+FDfFaAdNMgFoCEdAmzcdroGIK3V9lChoBkdAcHqiSJTESGgHTQMBaAhHQJs4i/1xsEd1fZQoaAZHQHGbp6QeV9poB00IAWgIR0CbOfWdVea8dX2UKGgGR0BJtxoqTbFkaAdNEAFoCEdAmz1svM8oyHV9lChoBkdAbq2hmoR7JGgHTSgBaAhHQJs/grQPZqV1fZQoaAZHQHAb2iYb83xoB00xAWgIR0CbQdFjNIK/dX2UKGgGR0BxWs8EFGG3aAdNAAFoCEdAm0U/X9R77nV9lChoBkdAcV+RyOq//WgHTUYBaAhHQJtHBVENOM51fZQoaAZHQG/Qn7pFCsxoB01XAWgIR0CbSN6xxDLKdX2UKGgGR0BwS+h4+r2haAdNWwFoCEdAm0v0VrRBvHV9lChoBkdAY+7aQFLWZ2gHTegDaAhHQJtSl57gKnh1fZQoaAZHQG5lcbR4QjFoB00cAWgIR0CbVB3dbgTAdX2UKGgGR0BrcJc5bQkYaAdNbwFoCEdAm1YUgB91EHV9lChoBkdAcID6FM7EHmgHTQIBaAhHQJtXa9Htnf51fZQoaAZHQHAYwxWT5ftoB004AWgIR0CbWkW7e2uxdX2UKGgGR0BxkHlLeyiVaAdL8mgIR0CbW5CGvfTDdX2UKGgGR0ByJVhiLEUCaAdNFwFoCEdAm10PoJRfnnV9lChoBkdAchp8e0XxfGgHTZkBaAhHQJtgdFBppN91fZQoaAZHQHM6JDVpblloB00tAWgIR0CbYh0/nnuBdX2UKGgGR0Bwu/Ov+wTuaAdNRgFoCEdAm2PYFFDv3XV9lChoBkdAbU04PwuuimgHTSwBaAhHQJtmlVWCEpR1fZQoaAZHQHBlws5GSZBoB00WAWgIR0CbaBxd6cAjdX2UKGgGR0Bx88COmzjWaAdNpgFoCEdAm2ptNBWxQnV9lChoBkdAb+ygr6LwWmgHTUcBaAhHQJtthRjz7Mx1fZQoaAZHQG0W2Af+0gNoB008AWgIR0Cbb8StNi6QdX2UKGgGR0BzCffixVyWaAdNDAFoCEdAm3GPvBrN4nV9lChoBkdAXbF/PPcBVGgHTegDaAhHQJt58qoZQ551fZQoaAZHQGPTRQ79ycVoB03oA2gIR0CbgJkl/pdKdX2UKGgGR0BtNa7btZ3caAdNfwFoCEdAm4Krx3FDOXV9lChoBkdASy533YcvNGgHS79oCEdAm4TdBv73wnV9lChoBkdAcBGLn9vS+mgHTUQBaAhHQJuGm0BwMph1fZQoaAZHQHBPv2oNutRoB02EAWgIR0CbiK+TeO4odX2UKGgGR0BwQIAn2IweaAdNEgFoCEdAm4tJiqhlDnV9lChoBkdAbf5L5hz/62gHTW8BaAhHQJuNReOXE611fZQoaAZHQHE+Vx4ptrNoB00pAWgIR0CbjuD7655JdX2UKGgGR0Bu6CpaRp1zaAdNJQFoCEdAm5CLAk9lmXV9lChoBkdAcbZ/6wdKd2gHTT4BaAhHQJuTY8V58jR1fZQoaAZHQHBOoBvJiiJoB00LAWgIR0CblNUfxMFmdX2UKGgGR0Bx7K/WUbDNaAdNIAFoCEdAm5ZgE+xGD3V9lChoBkdAYZeH0se4kWgHTegDaAhHQJuc/3g1m8N1fZQoaAZHQHFu9f9gndBoB00+AWgIR0CboBQRwqAjdX2UKGgGR0BwuUn5SFXaaAdNHwFoCEdAm6ILtVrAQHV9lChoBkdAY8cse4kNWmgHTegDaAhHQJuqzXwsoUl1fZQoaAZHQG7LddeIEbJoB00JAWgIR0CbrEb212JSdX2UKGgGR0BxtWuDBdleaAdNeQFoCEdAm695nxri2nV9lChoBkdAcBR7AtWdVmgHTRgBaAhHQJuxClGgBcR1fZQoaAZHQFz2N34bjtJoB03oA2gIR0Cbt7Jbt7a7dX2UKGgGR0Bv0j/KhcqwaAdNZAFoCEdAm7mqGpMpPXV9lChoBkdAa7uOU+s5n2gHTTEBaAhHQJu7SAy2x6h1fZQoaAZHQHDBfTLGJepoB01cAWgIR0CbvlfTTfBOdX2UKGgGR0Bxz+7SRbKSaAdL5GgIR0Cbv5HUc4o7dX2UKGgGR0BvfNtALRa5aAdL+mgIR0CbwPMcIZ62dX2UKGgGR0BwXt+Vkc0caAdNHAFoCEdAm8J4PXkHU3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQ4v5vXXaVPOxV7zGMJGkVEowDaW5jlIoRIzXSXmmWLPDeasWYUym6gAB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": "Generator(PCG64)"
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWVoQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQMjnf0DIPEvTCMTLh7gbpE4wDaW5jlIoQ+WK5afUVUJ5KW+ugAsWPdHWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylEqdsH8OdWJ1Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": "Generator(PCG64)"
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ff60345d79a9ebed09cbad7ab62c84717121ecbe717bf4cb4f4f2379ce91f75
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c11bf18dcafac70c28bf7c318a30a69f0845d38d4b8450ed252a8e6ae2e75bfe
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (192 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 238.9002532, "std_reward": 54.38384481185889, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-19T20:14:50.837137"}
|