--- base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit language: - en license: llama3.1 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Original Model Card # Uploaded model - **Developed by:** EpistemeAI - **License:** llama3.1 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. ```python from unsloth import FastLanguageModel model, tokenizer = FastLanguageModel.from_pretrained( model_name = "EpistemeAI/TuneLlama-3.1-8B-GGUF", max_seq_length = 8192, load_in_4bit = True, #token = "hf-xxxx", # use one if using gated models like meta-llama/Llama-2-7b-hf ) from transformers import TextStreamer from unsloth.chat_templates import get_chat_template tokenizer = get_chat_template( tokenizer, chat_template = "llama-3", mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style ) FastLanguageModel.for_inference(model) # Enable native 2x faster inference messages = [ # EDIT HERE! {"from": "human", "value": "Continue the fibonnaci sequence: 1, 1, 2, 3, 5, 8,"}, ] inputs = tokenizer.apply_chat_template(messages, tokenize = True, add_generation_prompt = True, return_tensors = "pt").to("cuda") text_streamer = TextStreamer(tokenizer) _ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 1024, use_cache = True) ```