--- library_name: peft license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: masked-slug-729 results: [] --- # masked-slug-729 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5084 - Hamming Loss: 0.1123 - Zero One Loss: 0.995 - Jaccard Score: 0.995 - Hamming Loss Optimised: 0.1123 - Hamming Loss Threshold: 0.5944 - Zero One Loss Optimised: 1.0 - Zero One Loss Threshold: 0.9000 - Jaccard Score Optimised: 0.7627 - Jaccard Score Threshold: 0.4303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.408225206539412e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold | |:-------------:|:-----:|:----:|:---------------:|:------------:|:-------------:|:-------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:| | 0.6838 | 1.0 | 800 | 0.6757 | 0.4291 | 1.0 | 0.8717 | 0.1123 | 0.5944 | 1.0 | 0.9000 | 0.8878 | 0.2889 | | 0.6577 | 2.0 | 1600 | 0.6238 | 0.2076 | 0.915 | 0.8579 | 0.1123 | 0.5944 | 1.0 | 0.9000 | 0.8224 | 0.4788 | | 0.6103 | 3.0 | 2400 | 0.5443 | 0.113 | 0.9888 | 0.9888 | 0.1123 | 0.5944 | 1.0 | 0.9000 | 0.8487 | 0.4056 | | 0.5495 | 4.0 | 3200 | 0.5206 | 0.1125 | 0.9938 | 0.9938 | 0.1123 | 0.5944 | 1.0 | 0.9000 | 0.7640 | 0.4489 | | 0.5332 | 5.0 | 4000 | 0.5112 | 0.1123 | 0.995 | 0.995 | 0.1123 | 0.5944 | 1.0 | 0.9000 | 0.7633 | 0.4459 | | 0.5304 | 6.0 | 4800 | 0.5084 | 0.1123 | 0.995 | 0.995 | 0.1123 | 0.5944 | 1.0 | 0.9000 | 0.7627 | 0.4303 | ### Framework versions - PEFT 0.13.2 - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0