update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- audiofolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-base-Toronto_emotional_speech_set
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# wav2vec2-base-Toronto_emotional_speech_set
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4925
|
22 |
+
- Accuracy: 0.8804
|
23 |
+
- Weighted f1: 0.8837
|
24 |
+
- Micro f1: 0.8804
|
25 |
+
- Macro f1: 0.8822
|
26 |
+
- Weighted recall: 0.8804
|
27 |
+
- Micro recall: 0.8804
|
28 |
+
- Macro recall: 0.8757
|
29 |
+
- Weighted precision: 0.9044
|
30 |
+
- Micro precision: 0.8804
|
31 |
+
- Macro precision: 0.9059
|
32 |
+
|
33 |
+
## Model description
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Intended uses & limitations
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training and evaluation data
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training procedure
|
46 |
+
|
47 |
+
### Training hyperparameters
|
48 |
+
|
49 |
+
The following hyperparameters were used during training:
|
50 |
+
- learning_rate: 3e-05
|
51 |
+
- train_batch_size: 32
|
52 |
+
- eval_batch_size: 32
|
53 |
+
- seed: 42
|
54 |
+
- gradient_accumulation_steps: 4
|
55 |
+
- total_train_batch_size: 128
|
56 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
+
- lr_scheduler_type: linear
|
58 |
+
- lr_scheduler_warmup_ratio: 0.1
|
59 |
+
- num_epochs: 15
|
60 |
+
|
61 |
+
### Training results
|
62 |
+
|
63 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|
64 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
|
65 |
+
| 1.9517 | 0.97 | 17 | 1.9432 | 0.2411 | 0.1338 | 0.2411 | 0.1201 | 0.2411 | 0.2411 | 0.2168 | 0.1161 | 0.2411 | 0.1049 |
|
66 |
+
| 1.9517 | 2.0 | 35 | 1.9036 | 0.3375 | 0.3037 | 0.3375 | 0.3082 | 0.3375 | 0.3375 | 0.3533 | 0.5364 | 0.3375 | 0.5379 |
|
67 |
+
| 1.9517 | 2.97 | 52 | 1.6629 | 0.4518 | 0.4020 | 0.4518 | 0.3936 | 0.4518 | 0.4518 | 0.4503 | 0.6751 | 0.4518 | 0.6555 |
|
68 |
+
| 1.9517 | 4.0 | 70 | 1.2026 | 0.7357 | 0.7121 | 0.7357 | 0.6989 | 0.7357 | 0.7357 | 0.7240 | 0.7903 | 0.7357 | 0.7848 |
|
69 |
+
| 1.9517 | 4.97 | 87 | 0.8458 | 0.8839 | 0.8796 | 0.8839 | 0.8767 | 0.8839 | 0.8839 | 0.8845 | 0.8874 | 0.8839 | 0.8807 |
|
70 |
+
| 1.9517 | 6.0 | 105 | 0.6493 | 0.8946 | 0.8939 | 0.8946 | 0.8914 | 0.8946 | 0.8946 | 0.8937 | 0.9049 | 0.8946 | 0.9014 |
|
71 |
+
| 1.9517 | 6.97 | 122 | 0.5149 | 0.9089 | 0.9046 | 0.9089 | 0.8989 | 0.9089 | 0.9089 | 0.8957 | 0.9275 | 0.9089 | 0.9327 |
|
72 |
+
| 1.9517 | 8.0 | 140 | 0.3814 | 0.9536 | 0.9531 | 0.9536 | 0.9501 | 0.9536 | 0.9536 | 0.9474 | 0.9577 | 0.9536 | 0.9583 |
|
73 |
+
| 1.9517 | 8.97 | 157 | 0.5627 | 0.85 | 0.8459 | 0.85 | 0.8402 | 0.85 | 0.85 | 0.8378 | 0.9100 | 0.85 | 0.9160 |
|
74 |
+
| 1.9517 | 10.0 | 175 | 0.4702 | 0.8911 | 0.8861 | 0.8911 | 0.8854 | 0.8911 | 0.8911 | 0.8938 | 0.9021 | 0.8911 | 0.8967 |
|
75 |
+
| 1.9517 | 10.97 | 192 | 0.3362 | 0.9393 | 0.9376 | 0.9393 | 0.9361 | 0.9393 | 0.9393 | 0.9399 | 0.9402 | 0.9393 | 0.9365 |
|
76 |
+
| 1.9517 | 12.0 | 210 | 0.3808 | 0.9179 | 0.9181 | 0.9179 | 0.9176 | 0.9179 | 0.9179 | 0.9180 | 0.9251 | 0.9179 | 0.9235 |
|
77 |
+
| 1.9517 | 12.97 | 227 | 0.4546 | 0.9036 | 0.9045 | 0.9036 | 0.9024 | 0.9036 | 0.9036 | 0.8988 | 0.9151 | 0.9036 | 0.9157 |
|
78 |
+
| 1.9517 | 14.0 | 245 | 0.5065 | 0.8786 | 0.8826 | 0.8786 | 0.8813 | 0.8786 | 0.8786 | 0.8742 | 0.9040 | 0.8786 | 0.9055 |
|
79 |
+
| 1.9517 | 14.57 | 255 | 0.4925 | 0.8804 | 0.8837 | 0.8804 | 0.8822 | 0.8804 | 0.8804 | 0.8757 | 0.9044 | 0.8804 | 0.9059 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.27.4
|
85 |
+
- Pytorch 2.0.0
|
86 |
+
- Datasets 2.11.0
|
87 |
+
- Tokenizers 0.13.3
|