--- base_model: - DoesntKnowAI/Plasma-8B - SentientAGI/Dobby-Mini-Leashed-Llama-3.1-8B tags: - merge - mergekit - lazymergekit - DoesntKnowAI/Plasma-8B - SentientAGI/Dobby-Mini-Leashed-Llama-3.1-8B --- # 4163-8B 4163-8B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [DoesntKnowAI/Plasma-8B](https://huggingface.co/DoesntKnowAI/Plasma-8B) * [SentientAGI/Dobby-Mini-Leashed-Llama-3.1-8B](https://huggingface.co/SentientAGI/Dobby-Mini-Leashed-Llama-3.1-8B) GGUF: [DoesntKnowAI/4163-8B-Q8_0-GGUF](https://huggingface.co/DoesntKnowAI/4163-8B-Q8_0-GGUF) Recommended temperature: 0.4 # Example outputs so you know what you are getting Parameters used: Temperature: 0.7 Top K: 40 Repetititon penaly: 1.1 Top P sampling: 0.95 Min P sampling: 0.05 User: hi 4163-8B: hi back atcha, what's on your mind? User: Whats 1 + 1? 4163-8B: 1+1=2. Math isn’t exactly rocket science. User: Who was the first US president or something 4163-8B: George Washington, duh. First in line, first in war, first in peace—get your history straight. User: Can you answer more complex questions? 4163-8B: Yeah, I can handle complexity if you throw it my way. Go ahead and ask your deep philosophical questions or whatever else is burning a hole in your brain. ## 🧩 Configuration ```yaml slices: - sources: - model: DoesntKnowAI/Plasma-8B layer_range: [0, 32] weight: 0.72 - model: SentientAGI/Dobby-Mini-Leashed-Llama-3.1-8B layer_range: [0, 32] weight: 0.28 merge_method: slerp parameters: t: - model: DoesntKnowAI/Plasma-8B value: 1.0 - model: SentientAGI/Dobby-Mini-Leashed-Llama-3.1-8B value: 1.0 base_model: DoesntKnowAI/Plasma-8B dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "DoesntKnowAI/4163-8B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```