--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Ekogenie results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: yo split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 73.44256048771194 --- # Whisper Small Hi - Ekogenie This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8922 - Wer: 73.4426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.6474 | 1.5385 | 200 | 0.8704 | 78.8341 | | 0.3733 | 3.0769 | 400 | 0.7785 | 74.3284 | | 0.1821 | 4.6154 | 600 | 0.8046 | 72.1661 | | 0.0816 | 6.1538 | 800 | 0.8618 | 73.0996 | | 0.0538 | 7.6923 | 1000 | 0.8922 | 73.4426 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1