--- base_model: - sometimesanotion/Lamarck-14B-v0.7-rc4 - sthenno/tempesthenno-ppo-ckpt40 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [sometimesanotion/Lamarck-14B-v0.7-rc4](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.7-rc4) * [sthenno/tempesthenno-ppo-ckpt40](https://huggingface.co/sthenno/tempesthenno-ppo-ckpt40) ### Configuration The following YAML configuration was used to produce this model: ```yaml # ============================================================================= # SuperMerge-14B-Simple # # This configuration merges only two components: # - Base Model: Provides stable foundational features. # Model: sometimesanotion/Lamarck-14B-v0.7-rc4 # # - Reasoning Module: Drives enhanced mid-layer reasoning. # Model: sthenno/tempesthenno-ppo-ckpt40 # # The merge is performed using slerp with a V-shaped interpolation curve. # Weighting across each 8-layer slice is tuned to balance core feature # preservation with advanced reasoning. # ============================================================================= name: SuperMerge-14B-Simple merge_method: slerp base_model: sometimesanotion/Lamarck-14B-v0.7-rc4 tokenizer_source: base dtype: float32 out_dtype: bfloat16 parameters: int8_mask: true # Optimize memory usage. normalize: true # Ensure weights are on a comparable scale. rescale: false # No additional rescaling necessary. # Interpolation curve for 6 slices (48 layers total): # Maintains a V-shaped emphasis for mid-layer processing. t: [0.1, 0.35, 0.85, 0.85, 0.35, 0.1] slices: # --------------------------------------------------------------------------- # Slice 1 (Layers 0-8): # - Early layers: nearly pure base model with minimal PPO influence. # --------------------------------------------------------------------------- - sources: - model: sometimesanotion/Lamarck-14B-v0.7-rc4 layer_range: [0, 8] parameters: weight: 0.95 - model: sthenno/tempesthenno-ppo-ckpt40 layer_range: [0, 8] parameters: weight: 0.05 # --------------------------------------------------------------------------- # Slice 2 (Layers 8-16): # - Blend base with stronger PPO contributions to boost reasoning. # --------------------------------------------------------------------------- - sources: - model: sometimesanotion/Lamarck-14B-v0.7-rc4 layer_range: [8, 16] parameters: weight: 0.4 - model: sthenno/tempesthenno-ppo-ckpt40 layer_range: [8, 16] parameters: weight: 0.6 # --------------------------------------------------------------------------- # Slice 3 (Layers 16-24): # - Mid-layer: Prioritize advanced reasoning by increasing the PPO share. # --------------------------------------------------------------------------- - sources: - model: sometimesanotion/Lamarck-14B-v0.7-rc4 layer_range: [16, 24] parameters: weight: 0.3 - model: sthenno/tempesthenno-ppo-ckpt40 layer_range: [16, 24] parameters: weight: 0.7 # --------------------------------------------------------------------------- # Slice 4 (Layers 24-32): # - Continue the focus on reasoning with PPO while still retaining base traits. # --------------------------------------------------------------------------- - sources: - model: sometimesanotion/Lamarck-14B-v0.7-rc4 layer_range: [24, 32] parameters: weight: 0.35 - model: sthenno/tempesthenno-ppo-ckpt40 layer_range: [24, 32] parameters: weight: 0.65 # --------------------------------------------------------------------------- # Slice 5 (Layers 32-40): # - Re-stabilize the network with a stronger base model contribution. # --------------------------------------------------------------------------- - sources: - model: sometimesanotion/Lamarck-14B-v0.7-rc4 layer_range: [32, 40] parameters: weight: 0.6 - model: sthenno/tempesthenno-ppo-ckpt40 layer_range: [32, 40] parameters: weight: 0.4 # --------------------------------------------------------------------------- # Slice 6 (Layers 40-48): # - Final output layers: Maintain fluency with the base model augmented by PPO. # --------------------------------------------------------------------------- - sources: - model: sometimesanotion/Lamarck-14B-v0.7-rc4 layer_range: [40, 48] parameters: weight: 0.6 - model: sthenno/tempesthenno-ppo-ckpt40 layer_range: [40, 48] parameters: weight: 0.4 ```