Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import PIL.Image
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import boto3
|
6 |
+
from io import BytesIO, StringIO
|
7 |
+
from fastai.vision.all import *
|
8 |
+
|
9 |
+
def get_x(r): return r['Image Path']
|
10 |
+
def get_y(r): return r['Survived']
|
11 |
+
|
12 |
+
def ProjectReportSplitter(df):
|
13 |
+
valid_pct = 0.2
|
14 |
+
unique_reports = df['Project Report'].unique()
|
15 |
+
valid_reports = np.random.choice(unique_reports, int(len(unique_reports) * valid_pct), replace=False)
|
16 |
+
valid_idx = df.index[df['Project Report'].isin(valid_reports)].tolist()
|
17 |
+
train_idx = df.index[~df.index.isin(valid_idx)].tolist()
|
18 |
+
return train_idx, valid_idx
|
19 |
+
|
20 |
+
# Use a function to resolve path
|
21 |
+
def get_x_transformed(r): return open_image_from_s3(get_x(r))
|
22 |
+
|
23 |
+
dblock = DataBlock(
|
24 |
+
blocks=(ImageBlock(cls=PILImage), CategoryBlock),
|
25 |
+
splitter=ProjectReportSplitter,
|
26 |
+
get_x=get_x_transformed,
|
27 |
+
get_y=get_y,
|
28 |
+
item_tfms=Resize(460, method='pad', pad_mode='zeros'),
|
29 |
+
batch_tfms=aug_transforms(mult=2, do_flip=True, max_rotate=20, max_zoom=1.1, max_warp=0.2)
|
30 |
+
)
|
31 |
+
|
32 |
+
# Load your model
|
33 |
+
learn = load_learner("templateClassifierDATAhalfEPOCHoneVISION.pkl")
|
34 |
+
|
35 |
+
# Print the vocabulary of the model
|
36 |
+
print("Model Vocabulary:", learn.dls.vocab)
|
37 |
+
|
38 |
+
labels = learn.dls.vocab
|
39 |
+
def predict(img):
|
40 |
+
img = PILImage.create(img)
|
41 |
+
pred,pred_idx,probs = learn.predict(img)
|
42 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
43 |
+
|
44 |
+
# def predict(img):
|
45 |
+
# img = PILImage.create(img)
|
46 |
+
# pred, pred_idx, probs = learn.predict(img)
|
47 |
+
# results = {labels[i]: float(probs[i]) for i in range(len(labels))}
|
48 |
+
# # Adjust results to highlight when 'Survived' meets the 75% threshold
|
49 |
+
# if results['Survived'] >= 0.75:
|
50 |
+
# results['Survived'] = 1.0 # Indicating high confidence of survival
|
51 |
+
# else:
|
52 |
+
# results['Survived'] = 0.0 # Indicating it did not meet the threshold
|
53 |
+
# return results
|
54 |
+
# def predict(img):
|
55 |
+
# img = PILImage.create(img)
|
56 |
+
# pred, pred_idx, probs = learn.predict(img)
|
57 |
+
# results = {labels[i]: float(probs[i]) for i in range(len(labels))}
|
58 |
+
# # Adjusting to display survival status based on the threshold
|
59 |
+
# survival_status = 'Survived' if results['Survived'] >= 0.75 else 'Not Survived'
|
60 |
+
# results['Survival Status'] = survival_status
|
61 |
+
# return results
|
62 |
+
|
63 |
+
|
64 |
+
# Gradio interface setup
|
65 |
+
title = "Photo Culling AI"
|
66 |
+
description = "Upload your photo to check if it survives culling."
|
67 |
+
article = "This interface uses a model trained to predict whether a photo is relevant for a project report."
|
68 |
+
gr.Interface(fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=2), title=title, description=description, article=article).launch(share=True,show_error=True)
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
# import gradio as gr
|
74 |
+
# import PIL.Image
|
75 |
+
# import pandas as pd
|
76 |
+
# import boto3
|
77 |
+
# from io import BytesIO, StringIO
|
78 |
+
# from fastai.vision.all import *
|
79 |
+
|
80 |
+
|
81 |
+
# def get_x(r): return r['Image Path']
|
82 |
+
|
83 |
+
# def get_y(r): return r['Survived']
|
84 |
+
|
85 |
+
# def ProjectReportSplitter(df):
|
86 |
+
# valid_pct = 0.2
|
87 |
+
# unique_reports = df['Project Report'].unique()
|
88 |
+
# valid_reports = np.random.choice(unique_reports, int(len(unique_reports) * valid_pct), replace=False)
|
89 |
+
# valid_idx = df.index[df['Project Report'].isin(valid_reports)].tolist()
|
90 |
+
# train_idx = df.index[~df.index.isin(valid_idx)].tolist()
|
91 |
+
# return train_idx, valid_idx
|
92 |
+
|
93 |
+
|
94 |
+
# # Use a function to resolve path
|
95 |
+
# def get_x_transformed(r): return open_image_from_s3(get_x(r))
|
96 |
+
|
97 |
+
# dblock = DataBlock(
|
98 |
+
# blocks=(ImageBlock(cls=PILImage), CategoryBlock),
|
99 |
+
# splitter=ProjectReportSplitter,
|
100 |
+
# get_x=get_x_transformed,
|
101 |
+
# get_y=get_y,
|
102 |
+
# item_tfms=Resize(460, method='pad', pad_mode='zeros'),
|
103 |
+
# batch_tfms=aug_transforms(mult=2, do_flip=True, max_rotate=20, max_zoom=1.1, max_warp=0.2)
|
104 |
+
# )
|
105 |
+
|
106 |
+
# # Load your model
|
107 |
+
# learn = load_learner("templateClassifierDATAhalfEPOCHoneVISION.pkl")
|
108 |
+
|
109 |
+
# # Print the vocabulary of the model
|
110 |
+
# print("Model Vocabulary:", learn.dls.vocab)
|
111 |
+
|
112 |
+
|
113 |
+
# # Update prediction function to directly read from S3
|
114 |
+
# def predict(img_path):
|
115 |
+
# pred, pred_idx, probs = learn.predict(img_path)
|
116 |
+
# return {learn.dls.vocab[i]: float(probs[i]) for i in range(len(probs))}
|
117 |
+
|
118 |
+
# # Gradio interface setup
|
119 |
+
# title = "Photo Culling AI"
|
120 |
+
# description = "Upload your photo to check if it survives culling."
|
121 |
+
# article = "This interface uses a model trained to predict whether a photo is relevant for a project report."
|
122 |
+
# gr.Interface(fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=2), title=title, description=description, article=article).launch(share=True)
|