File size: 1,311 Bytes
b3ddb2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
language:
- en
- fr
- de
- es
- it
- pt
- zh
- ja
- ru
- ko
license: apache-2.0
library_name: vllm
base_model: mlx-community/Mistral-Small-24B-Instruct-2501-4bit
extra_gated_description: If you want to learn more about how we process your personal
data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
tags:
- mlx
- mlx
- mlx-my-repo
---
# CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-4bit-Q2-mlx
The Model [CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-4bit-Q2-mlx](https://huggingface.co/CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-4bit-Q2-mlx) was converted to MLX format from [mlx-community/Mistral-Small-24B-Instruct-2501-4bit](https://huggingface.co/mlx-community/Mistral-Small-24B-Instruct-2501-4bit) using mlx-lm version **0.20.5**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-4bit-Q2-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|