File size: 1,311 Bytes
b3ddb2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
language:
- en
- fr
- de
- es
- it
- pt
- zh
- ja
- ru
- ko
license: apache-2.0
library_name: vllm
base_model: mlx-community/Mistral-Small-24B-Instruct-2501-4bit
extra_gated_description: If you want to learn more about how we process your personal
  data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
tags:
- mlx
- mlx
- mlx-my-repo
---

# CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-4bit-Q2-mlx

The Model [CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-4bit-Q2-mlx](https://huggingface.co/CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-4bit-Q2-mlx) was converted to MLX format from [mlx-community/Mistral-Small-24B-Instruct-2501-4bit](https://huggingface.co/mlx-community/Mistral-Small-24B-Instruct-2501-4bit) using mlx-lm version **0.20.5**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("CuckmeisterFuller/Mistral-Small-24B-Instruct-2501-4bit-Q2-mlx")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```