{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a988e20f100>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a988e20f1a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a988e20f240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a988e20f2e0>", "_build": "<function ActorCriticPolicy._build at 0x7a988e20f380>", "forward": "<function ActorCriticPolicy.forward at 0x7a988e20f420>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a988e20f4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a988e20f560>", "_predict": "<function ActorCriticPolicy._predict at 0x7a988e20f600>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a988e20f6a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a988e20f740>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a988e20f7e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a988e37d5c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738164397006006043, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAN3Doz6MK+M+HUKLvkKqib6BNYo9JglkvQAAAAAAAAAApvCwvfwTiD+IXMa79lvAvtos1L12/BY9AAAAAAAAAAD7b6u+5lKWP6hrr74ZyPe+1M4Hv7EqHL0AAAAAAAAAAIZIdj5w3oU+SuGTvs33gr5TFLG8EMJnvQAAAAAAAAAA83KpPaZhuz+qYXM+cROuvkAjVT0j/t89AAAAAAAAAADN6km9pB6wPxxKLL/iXZq+OTBzPOJevL0AAAAAAAAAAJqSirzl4KQ/dllCvWdAzL68GbW9oT+BPQAAAAAAAAAA5l8wPbHiTT9D6e06J5uxvof4QD3d4FE8AAAAAAAAAADm1l29wR2wPgKxTz2Lbpu+e7HrOy06hD0AAAAAAAAAADPNHT3HKLE/9REhPk/isL5SWQ68nOYOPQAAAAAAAAAAs//JPVXRbD6IUna+XyaIvgV1RDtpr4W9AAAAAAAAAAAzCZU91wI8PwtLkr3cc8S+EXbou3TOubwAAAAAAAAAADOjXDwSSqU/2pnpPcqS3L6T2+g8IlhGPQAAAAAAAAAAM/yOPPhztT/N7VY+jGVmvZ2Dj7w+I8K6AAAAAAAAAAAz0XK8BZaku8UQkbp3RzE8sJAMvWmQGz0AAIA/AACAPzM6WT0PwEi8O6+TvBGkHzyv+a69CKUIPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHELFiKBNEiMAWyUTY4BjAF0lEdAnLUhu4wyqXV9lChoBkdAb/biWE9MbmgHTQ0BaAhHQJy1drk8zRB1fZQoaAZHQHLdh9XtBv9oB00SAWgIR0CctaJwbVBldX2UKGgGR0Bux7WTX8O1aAdNGQFoCEdAnLbFc6eXiXV9lChoBkdAcLy9Wp6yB2gHTSQBaAhHQJy2zWhAWzp1fZQoaAZHQHCip6Y3Ns5oB00rAWgIR0Cctt4+KTB7dX2UKGgGR0BuzSY7aIvbaAdNEAFoCEdAnLcMqnWJ8HV9lChoBkdAb5lq+JxecGgHS/xoCEdAnLc28Empl3V9lChoBkdAbLlpZfUnX2gHTSUBaAhHQJy3aPjn3cp1fZQoaAZHQG1gt7a7EpBoB00VAWgIR0CcuAlsxfv4dX2UKGgGR0ByiksUZeiSaAdNJAFoCEdAnLszqnm7rnV9lChoBkdAcHSy+6Ae72gHTRYBaAhHQJy7rICEHt51fZQoaAZHQHK2UhePaL5oB00oAWgIR0CcvJjFhodudX2UKGgGR0BxcFllK9PDaAdNAgFoCEdAnLyi4e9zwXV9lChoBkdAcVP6mO2iL2gHTTYBaAhHQJy88DnvDxd1fZQoaAZHQHEZlqzqrzZoB01MAWgIR0CcvWL/CIk7dX2UKGgGR0BvtvBYV6/qaAdNJAFoCEdAnL3mg3974XV9lChoBkdATl9OXVsk6mgHS+loCEdAnL8G4uscQ3V9lChoBkdAcrfC7K7qZGgHTSUBaAhHQJy/L/JeVs11fZQoaAZHQHIECSmqHXVoB00cAWgIR0Ccvzg8r7O3dX2UKGgGR0BzD2BxxT86aAdNMAFoCEdAnL94xYaHbnV9lChoBkdAcbavwEyLymgHTSMBaAhHQJy/nWz4UN91fZQoaAZHQHAwWhdt2s9oB00cAWgIR0Ccv6tNzr/sdX2UKGgGR0BxH00IkZ75aAdNhQFoCEdAnMAoCuEEknV9lChoBkdAct/6reZXuGgHTU8BaAhHQJzATDye7MB1fZQoaAZHQHCQWkvboKVoB00UAWgIR0CcwxofjjrBdX2UKGgGR0BhiEfs/pt8aAdN6ANoCEdAnMMfy5I6KnV9lChoBkdAcaeB3zMA3mgHTQ4BaAhHQJzDUYyfthN1fZQoaAZHQHAOv/echDBoB0v9aAhHQJzEMGA08/51fZQoaAZHQHH5ntnf2sdoB00NAWgIR0CcxD+3Ytg8dX2UKGgGR0By15/pdKNAaAdL9mgIR0CcxHcpb2UTdX2UKGgGR0ByFvigkC3gaAdNUwFoCEdAnMYJpi7TUnV9lChoBkdAcHPg0j1PFmgHTQEBaAhHQJzGW2MKkVN1fZQoaAZHQG8XCGN70FtoB01lAWgIR0CcxpXVsk6cdX2UKGgGR0BwB7g2qDK6aAdNCgFoCEdAnMbK6OHWSXV9lChoBkdAb9fTlT3qRmgHS/ZoCEdAnMbSfUWl/HV9lChoBkdAca1JdB0IT2gHTTcBaAhHQJzHWluWKMx1fZQoaAZHQHL6T2vjfeloB005AWgIR0Ccx4txuKoAdX2UKGgGR0ByIIHJLdvbaAdNMgFoCEdAnMe4atLcsXV9lChoBkdAcD8l3yI552gHTRwBaAhHQJzH4oMKCxx1fZQoaAZHQHAue1fE4vNoB02IAWgIR0Cc3ODu0CzUdX2UKGgGR0BtvXyLAHmjaAdL/GgIR0Cc3TA/9pAVdX2UKGgGR0ByZrcbiqACaAdL+mgIR0Cc3oTGHYYjdX2UKGgGR0Buxac0+C9RaAdNNgFoCEdAnN78V58jRnV9lChoBkdAcCMpjtoi92gHTSUBaAhHQJzfg0gr6Lx1fZQoaAZHQHILf2bobGZoB00+AWgIR0Cc4DBzmwJPdX2UKGgGR0BvflihFmWdaAdL+mgIR0Cc4JYODrZ8dX2UKGgGR0BwrHta6jFiaAdNdQFoCEdAnOCcLWqcVnV9lChoBkdAcbwgte2NN2gHTRkBaAhHQJzhN+6RQrN1fZQoaAZHQHIM03fhuO1oB00gAWgIR0Cc4ewsoUi7dX2UKGgGR0BuKX3QD3dsaAdNIgFoCEdAnOIDXWe6I3V9lChoBkdAcEAMWXTmXGgHTQ8BaAhHQJziF9w3o9t1fZQoaAZHQHG+7pNbkfdoB01aAWgIR0Cc4ro11nuidX2UKGgGR0Bv8Q2bXpW4aAdNNAFoCEdAnONApe/pMnV9lChoBkdAcDdtBv73wmgHTTsBaAhHQJzjm+WWyC51fZQoaAZHQGy3/SQYDT1oB013AWgIR0Cc5VjmCAc1dX2UKGgGR0Buls5sCT2WaAdNOAFoCEdAnOW0tRNypHV9lChoBkdActmQpF1B+mgHTVMBaAhHQJzmIDfWMCN1fZQoaAZHQHJhkWIoE0VoB00gAWgIR0Cc5muAqd6LdX2UKGgGR0BytWjxkNF0aAdNMwFoCEdAnOdaF23az3V9lChoBkdAbukntOVPe2gHTQ0BaAhHQJzndbUwztV1fZQoaAZHQG7QOO801qFoB00zAWgIR0Cc59xk/bCadX2UKGgGR0Btza4J/oaDaAdNHAFoCEdAnOg1KGtZFHV9lChoBkdAcAktfXwsoWgHTTEBaAhHQJzotQCSzPd1fZQoaAZHQHBXDZQHiWFoB00EAWgIR0Cc6MzcAR02dX2UKGgGR0BxAQqnWJ7+aAdL72gIR0Cc6PYWcjJNdX2UKGgGR0ByhlEJBw+/aAdNEwFoCEdAnOkTCxeLN3V9lChoBkdAcAcT238XN2gHTRcBaAhHQJzpRyEL6UJ1fZQoaAZHQHB7jwc5sCVoB0vvaAhHQJzpYCih37l1fZQoaAZHQHJavxMFlkJoB008AWgIR0Cc6XESdvsJdX2UKGgGR0BzGAvN/vv0aAdNJAFoCEdAnOrDNpudgHV9lChoBkdAbwjakhzNlmgHS/VoCEdAnOv0xM36ynV9lChoBkdAcgQQCSzPbGgHTSYBaAhHQJzsh/ZuhsZ1fZQoaAZHQG4jnpSrHVBoB00aAWgIR0Cc7I+n62v0dX2UKGgGR0BwF02Hck+paAdNGAFoCEdAnO0veYUnHHV9lChoBkdAcLxdEb5uZWgHTQEBaAhHQJztff3vhIh1fZQoaAZHQHLnXzxwyZdoB0v9aAhHQJzvqLvTgEV1fZQoaAZHQHEVDLSuyNZoB00YAWgIR0Cc77LQXyiFdX2UKGgGR0BxmwvXbuc+aAdNCgFoCEdAnO/BrBTGYXV9lChoBkdAcM3yX2M85mgHTT0BaAhHQJzvyiDdxhl1fZQoaAZHQHJhWUjcEeRoB01MAWgIR0Cc78pt78ekdX2UKGgGR0Bx9X2pQ1rJaAdNHwFoCEdAnO/+lwcYInV9lChoBkdAcbxPRRdhRmgHTRMBaAhHQJzwbdN34bl1fZQoaAZHQHE9QL3K0UpoB01VAWgIR0Cc8Lh8IAwPdX2UKGgGR0BwcDoW56MSaAdNMQFoCEdAnPEUj5bhWHV9lChoBkdAb21CQ9zOo2gHTUsBaAhHQJzxOD6Fds11fZQoaAZHQHEsuK4x1xNoB0vyaAhHQJzy4pgCwKV1fZQoaAZHQHBK/ReC04RoB005AWgIR0Cc8u6UaAFxdX2UKGgGR0BxLEn/kvK2aAdNGgFoCEdAnPNa6e5Fw3V9lChoBkdAcMYuanaWX2gHTREBaAhHQJzzruQZGax1fZQoaAZHQFPCk+5e7cxoB0u3aAhHQJz1FVXFLnN1fZQoaAZHQG6f1bRnezloB000AWgIR0Cc9VY8dPtVdX2UKGgGR0Amzsenyd4FaAdL1WgIR0Cc9XOSGJvYdX2UKGgGR0BvkqyB06o3aAdNOAFoCEdAnPXN34bjtHV9lChoBkdAa3GUjcEeQ2gHTQABaAhHQJz2eQIUrTZ1fZQoaAZHQHLW/8MuvlloB00EAWgIR0Cc9oG96C17dX2UKGgGR0BvIrsIE8q4aAdNCwFoCEdAnPa7CemNznV9lChoBkdAcVSgfEGZ/mgHS+5oCEdAnPb5NCZ4OnV9lChoBkdAbF9a/yoXK2gHTR0BaAhHQJz3Fo+Ofd11fZQoaAZHQHKlPdRBNVRoB00aAWgIR0Cc9x9w3o9tdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |