update README.md
Browse files
README.md
CHANGED
@@ -1,119 +1,119 @@
|
|
1 |
-
---
|
2 |
-
base_model:
|
3 |
-
- tianweiy/DMD2
|
4 |
-
- ByteDance/Hyper-SD
|
5 |
-
- stabilityai/stable-diffusion-xl-base-1.0
|
6 |
-
pipeline_tag: text-to-image
|
7 |
-
library_name: diffusers
|
8 |
-
tags:
|
9 |
-
- text-to-image
|
10 |
-
- stable-diffusion
|
11 |
-
- sdxl
|
12 |
-
- adversarial diffusion distillation
|
13 |
-
---
|
14 |
-
#
|
15 |
-
<!-- > [**NitroFusion: High-Fidelity Single-Step Diffusion through Dynamic Adversarial Training**](), -->
|
16 |
-
> **NitroFusion: High-Fidelity Single-Step Diffusion through Dynamic Adversarial Training**
|
17 |
-
>
|
18 |
-
> Dar-Yen Chen, Hmrishav Bandyopadhyay, Kai Zou, Yi-Zhe Song
|
19 |
-
|
20 |
-
![](./assets/banner.jpg)
|
21 |
-
|
22 |
-
<!-- arXiv Paper: []()
|
23 |
-
|
24 |
-
Official GitHub Repository: []()
|
25 |
-
|
26 |
-
Project Page: []() -->
|
27 |
-
|
28 |
-
## News
|
29 |
-
* 29 Nov 2024: Released two checkpoints: **NitroSD-Realism** and **NitroSD-Vibrant**.
|
30 |
-
|
31 |
-
|
32 |
-
<!-- ## Online Demos
|
33 |
-
NitroFusion single-step Text-to-Image demo hosted on [🤗 Hugging Face]() -->
|
34 |
-
|
35 |
-
## Model Overview
|
36 |
-
- `nitrosd-realism_unet.safetensors`: Produces photorealistic images with fine details.
|
37 |
-
- `nitrosd-vibrant_unet.safetensors`: Offers vibrant, saturated color characteristics.
|
38 |
-
- Both models support 1 to 4 inference steps.
|
39 |
-
|
40 |
-
|
41 |
-
## Usage
|
42 |
-
|
43 |
-
First, we need to implement the scheduler with timestep shift for multi-step inference:
|
44 |
-
```python
|
45 |
-
from diffusers import LCMScheduler
|
46 |
-
class TimestepShiftLCMScheduler(LCMScheduler):
|
47 |
-
def __init__(self, *args, shifted_timestep=250, **kwargs):
|
48 |
-
super().__init__(*args, **kwargs)
|
49 |
-
self.register_to_config(shifted_timestep=shifted_timestep)
|
50 |
-
def set_timesteps(self, *args, **kwargs):
|
51 |
-
super().set_timesteps(*args, **kwargs)
|
52 |
-
self.origin_timesteps = self.timesteps.clone()
|
53 |
-
self.shifted_timesteps = (self.timesteps * self.config.shifted_timestep / self.config.num_train_timesteps).long()
|
54 |
-
self.timesteps = self.shifted_timesteps
|
55 |
-
def step(self, model_output, timestep, sample, generator=None, return_dict=True):
|
56 |
-
if self.step_index is None:
|
57 |
-
self._init_step_index(timestep)
|
58 |
-
self.timesteps = self.origin_timesteps
|
59 |
-
output = super().step(model_output, timestep, sample, generator, return_dict)
|
60 |
-
self.timesteps = self.shifted_timesteps
|
61 |
-
return output
|
62 |
-
```
|
63 |
-
|
64 |
-
|
65 |
-
We can then utilize the diffuser pipeline:
|
66 |
-
```python
|
67 |
-
import torch
|
68 |
-
from diffusers import DiffusionPipeline, UNet2DConditionModel
|
69 |
-
from huggingface_hub import hf_hub_download
|
70 |
-
from safetensors.torch import load_file
|
71 |
-
# Load model.
|
72 |
-
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
73 |
-
repo = "ChenDY/NitroFusion"
|
74 |
-
# NitroSD-Realism
|
75 |
-
ckpt = "nitrosd-realism_unet.safetensors"
|
76 |
-
unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
|
77 |
-
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
78 |
-
scheduler = TimestepShiftLCMScheduler.from_pretrained(base_model_id, subfolder="scheduler", shifted_timestep=250)
|
79 |
-
scheduler.config.original_inference_steps = 4
|
80 |
-
# # NitroSD-Vibrant
|
81 |
-
# ckpt = "nitrosd-vibrant_unet.safetensors"
|
82 |
-
# unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
|
83 |
-
# unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
84 |
-
# scheduler = TimestepShiftLCMScheduler.from_pretrained(base_model_id, subfolder="scheduler", shifted_timestep=500)
|
85 |
-
# scheduler.config.original_inference_steps = 4
|
86 |
-
pipe = DiffusionPipeline.from_pretrained(
|
87 |
-
base_model_id,
|
88 |
-
unet=unet,
|
89 |
-
scheduler=scheduler,
|
90 |
-
torch_dtype=torch.float16,
|
91 |
-
variant="fp16",
|
92 |
-
).to("cuda")
|
93 |
-
prompt = "a photo of a cat"
|
94 |
-
image = pipe(
|
95 |
-
prompt=prompt,
|
96 |
-
num_inference_steps=1, # NotroSD-Realism and -Vibrant both support 1 - 4 inference steps.
|
97 |
-
guidance_scale=0,
|
98 |
-
).images[0]
|
99 |
-
```
|
100 |
-
|
101 |
-
## License
|
102 |
-
|
103 |
-
NitroSD-Realism is released under [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en), following its base model *DMD2*.
|
104 |
-
|
105 |
-
NitroSD-Vibrant is released under [openrail++](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md).
|
106 |
-
|
107 |
-
<!-- ## Contact
|
108 |
-
|
109 |
-
Feel free to contact us if you have any questions about the paper!
|
110 |
-
|
111 |
-
Dar-Yen Chen [@surrey.ac.uk](mailto:@surrey.ac.uk)
|
112 |
-
|
113 |
-
## Citation
|
114 |
-
|
115 |
-
If you find NitroFusion useful or relevant to your research, please kindly cite our papers:
|
116 |
-
|
117 |
-
```bib
|
118 |
-
|
119 |
-
``` -->
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- tianweiy/DMD2
|
4 |
+
- ByteDance/Hyper-SD
|
5 |
+
- stabilityai/stable-diffusion-xl-base-1.0
|
6 |
+
pipeline_tag: text-to-image
|
7 |
+
library_name: diffusers
|
8 |
+
tags:
|
9 |
+
- text-to-image
|
10 |
+
- stable-diffusion
|
11 |
+
- sdxl
|
12 |
+
- adversarial diffusion distillation
|
13 |
+
---
|
14 |
+
# NitroFusion
|
15 |
+
<!-- > [**NitroFusion: High-Fidelity Single-Step Diffusion through Dynamic Adversarial Training**](), -->
|
16 |
+
> **NitroFusion: High-Fidelity Single-Step Diffusion through Dynamic Adversarial Training**
|
17 |
+
>
|
18 |
+
> Dar-Yen Chen, Hmrishav Bandyopadhyay, Kai Zou, Yi-Zhe Song
|
19 |
+
|
20 |
+
![](./assets/banner.jpg)
|
21 |
+
|
22 |
+
<!-- arXiv Paper: []()
|
23 |
+
|
24 |
+
Official GitHub Repository: []()
|
25 |
+
|
26 |
+
Project Page: []() -->
|
27 |
+
|
28 |
+
## News
|
29 |
+
* 29 Nov 2024: Released two checkpoints: **NitroSD-Realism** and **NitroSD-Vibrant**.
|
30 |
+
|
31 |
+
|
32 |
+
<!-- ## Online Demos
|
33 |
+
NitroFusion single-step Text-to-Image demo hosted on [🤗 Hugging Face]() -->
|
34 |
+
|
35 |
+
## Model Overview
|
36 |
+
- `nitrosd-realism_unet.safetensors`: Produces photorealistic images with fine details.
|
37 |
+
- `nitrosd-vibrant_unet.safetensors`: Offers vibrant, saturated color characteristics.
|
38 |
+
- Both models support 1 to 4 inference steps.
|
39 |
+
|
40 |
+
|
41 |
+
## Usage
|
42 |
+
|
43 |
+
First, we need to implement the scheduler with timestep shift for multi-step inference:
|
44 |
+
```python
|
45 |
+
from diffusers import LCMScheduler
|
46 |
+
class TimestepShiftLCMScheduler(LCMScheduler):
|
47 |
+
def __init__(self, *args, shifted_timestep=250, **kwargs):
|
48 |
+
super().__init__(*args, **kwargs)
|
49 |
+
self.register_to_config(shifted_timestep=shifted_timestep)
|
50 |
+
def set_timesteps(self, *args, **kwargs):
|
51 |
+
super().set_timesteps(*args, **kwargs)
|
52 |
+
self.origin_timesteps = self.timesteps.clone()
|
53 |
+
self.shifted_timesteps = (self.timesteps * self.config.shifted_timestep / self.config.num_train_timesteps).long()
|
54 |
+
self.timesteps = self.shifted_timesteps
|
55 |
+
def step(self, model_output, timestep, sample, generator=None, return_dict=True):
|
56 |
+
if self.step_index is None:
|
57 |
+
self._init_step_index(timestep)
|
58 |
+
self.timesteps = self.origin_timesteps
|
59 |
+
output = super().step(model_output, timestep, sample, generator, return_dict)
|
60 |
+
self.timesteps = self.shifted_timesteps
|
61 |
+
return output
|
62 |
+
```
|
63 |
+
|
64 |
+
|
65 |
+
We can then utilize the diffuser pipeline:
|
66 |
+
```python
|
67 |
+
import torch
|
68 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel
|
69 |
+
from huggingface_hub import hf_hub_download
|
70 |
+
from safetensors.torch import load_file
|
71 |
+
# Load model.
|
72 |
+
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
73 |
+
repo = "ChenDY/NitroFusion"
|
74 |
+
# NitroSD-Realism
|
75 |
+
ckpt = "nitrosd-realism_unet.safetensors"
|
76 |
+
unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
|
77 |
+
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
78 |
+
scheduler = TimestepShiftLCMScheduler.from_pretrained(base_model_id, subfolder="scheduler", shifted_timestep=250)
|
79 |
+
scheduler.config.original_inference_steps = 4
|
80 |
+
# # NitroSD-Vibrant
|
81 |
+
# ckpt = "nitrosd-vibrant_unet.safetensors"
|
82 |
+
# unet = UNet2DConditionModel.from_config(base_model_id, subfolder="unet").to("cuda", torch.float16)
|
83 |
+
# unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
84 |
+
# scheduler = TimestepShiftLCMScheduler.from_pretrained(base_model_id, subfolder="scheduler", shifted_timestep=500)
|
85 |
+
# scheduler.config.original_inference_steps = 4
|
86 |
+
pipe = DiffusionPipeline.from_pretrained(
|
87 |
+
base_model_id,
|
88 |
+
unet=unet,
|
89 |
+
scheduler=scheduler,
|
90 |
+
torch_dtype=torch.float16,
|
91 |
+
variant="fp16",
|
92 |
+
).to("cuda")
|
93 |
+
prompt = "a photo of a cat"
|
94 |
+
image = pipe(
|
95 |
+
prompt=prompt,
|
96 |
+
num_inference_steps=1, # NotroSD-Realism and -Vibrant both support 1 - 4 inference steps.
|
97 |
+
guidance_scale=0,
|
98 |
+
).images[0]
|
99 |
+
```
|
100 |
+
|
101 |
+
## License
|
102 |
+
|
103 |
+
NitroSD-Realism is released under [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en), following its base model *DMD2*.
|
104 |
+
|
105 |
+
NitroSD-Vibrant is released under [openrail++](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md).
|
106 |
+
|
107 |
+
<!-- ## Contact
|
108 |
+
|
109 |
+
Feel free to contact us if you have any questions about the paper!
|
110 |
+
|
111 |
+
Dar-Yen Chen [@surrey.ac.uk](mailto:@surrey.ac.uk)
|
112 |
+
|
113 |
+
## Citation
|
114 |
+
|
115 |
+
If you find NitroFusion useful or relevant to your research, please kindly cite our papers:
|
116 |
+
|
117 |
+
```bib
|
118 |
+
|
119 |
+
``` -->
|