File size: 1,665 Bytes
eb07498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
{}
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

This model is a GPT-J 6B fine-tuned on the TL;DR dataset using RLHF (reinforcement learning from human feedback), the same
technique that powers ChatGPT.

The TL;DR dataset is a summarization dataset, hence this model is fine-tuned for the summarization task as well.

This is likely the first open-source LLM fine-tuned on RLHF available publicly, thanks to Carper AI.

It aims to recreate the results of the [original paper by OpenAI](https://arxiv.org/abs/2009.01325).

# Model Details

- Base Model : GPT-J 6B
- Fine-Tuning Method : PPO, RLHF
- Fine-Tuning Dataset: TL;DR
- Fine-Tuning Task: Summarization

## Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** Duy V. Phung, Ayush Thakur, Louis Castricato, Jonathan Tow, Alex Havrilla
- **Finetuned from model [optional]:** GPT-J 6B

## Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/CarperAI/trlx/tree/main/examples/summarize_rlhf



## Results

SFT vs PPO

    __ROUGE scores__

    | Model | Rouge-1 | Rouge-2 | Rouge-L | Average |
    | --- | --- | --- | --- |   --- |
    | SFT | 0.334 | 0.125 | 0.261 | 0.240 |
    | PPO | 0.323 | 0.109 | 0.238 | 0.223 |

    __Reward scores__

    | Model | Average Reward | Reward $\Delta$ |
    | --- | --- | --- |
    | SFT | 2.729 | -0.181 |
    | PPO | 3.291 | +0.411 |