import argparse from contextlib import nullcontext import torch from accelerate import init_empty_weights from safetensors.torch import load_file from transformers import T5EncoderModel, T5Tokenizer from diffusers import AutoencoderKLMochi, FlowMatchEulerDiscreteScheduler, MochiPipeline, MochiTransformer3DModel from diffusers.utils.import_utils import is_accelerate_available CTX = init_empty_weights if is_accelerate_available() else nullcontext TOKENIZER_MAX_LENGTH = 256 parser = argparse.ArgumentParser() parser.add_argument("--transformer_checkpoint_path", default=None, type=str) parser.add_argument("--vae_encoder_checkpoint_path", default=None, type=str) parser.add_argument("--vae_decoder_checkpoint_path", default=None, type=str) parser.add_argument("--output_path", required=True, type=str) parser.add_argument("--push_to_hub", action="store_true", default=False, help="Whether to push to HF Hub after saving") parser.add_argument("--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory") parser.add_argument("--dtype", type=str, default=None) args = parser.parse_args() # This is specific to `AdaLayerNormContinuous`: # Diffusers implementation split the linear projection into the scale, shift while Mochi split it into shift, scale def swap_scale_shift(weight, dim): shift, scale = weight.chunk(2, dim=0) new_weight = torch.cat([scale, shift], dim=0) return new_weight def swap_proj_gate(weight): proj, gate = weight.chunk(2, dim=0) new_weight = torch.cat([gate, proj], dim=0) return new_weight def convert_mochi_transformer_checkpoint_to_diffusers(ckpt_path): original_state_dict = load_file(ckpt_path, device="cpu") new_state_dict = {} # Convert patch_embed new_state_dict["patch_embed.proj.weight"] = original_state_dict.pop("x_embedder.proj.weight") new_state_dict["patch_embed.proj.bias"] = original_state_dict.pop("x_embedder.proj.bias") # Convert time_embed new_state_dict["time_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop("t_embedder.mlp.0.weight") new_state_dict["time_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop("t_embedder.mlp.0.bias") new_state_dict["time_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop("t_embedder.mlp.2.weight") new_state_dict["time_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop("t_embedder.mlp.2.bias") new_state_dict["time_embed.pooler.to_kv.weight"] = original_state_dict.pop("t5_y_embedder.to_kv.weight") new_state_dict["time_embed.pooler.to_kv.bias"] = original_state_dict.pop("t5_y_embedder.to_kv.bias") new_state_dict["time_embed.pooler.to_q.weight"] = original_state_dict.pop("t5_y_embedder.to_q.weight") new_state_dict["time_embed.pooler.to_q.bias"] = original_state_dict.pop("t5_y_embedder.to_q.bias") new_state_dict["time_embed.pooler.to_out.weight"] = original_state_dict.pop("t5_y_embedder.to_out.weight") new_state_dict["time_embed.pooler.to_out.bias"] = original_state_dict.pop("t5_y_embedder.to_out.bias") new_state_dict["time_embed.caption_proj.weight"] = original_state_dict.pop("t5_yproj.weight") new_state_dict["time_embed.caption_proj.bias"] = original_state_dict.pop("t5_yproj.bias") # Convert transformer blocks num_layers = 48 for i in range(num_layers): block_prefix = f"transformer_blocks.{i}." old_prefix = f"blocks.{i}." # norm1 new_state_dict[block_prefix + "norm1.linear.weight"] = original_state_dict.pop(old_prefix + "mod_x.weight") new_state_dict[block_prefix + "norm1.linear.bias"] = original_state_dict.pop(old_prefix + "mod_x.bias") if i < num_layers - 1: new_state_dict[block_prefix + "norm1_context.linear.weight"] = original_state_dict.pop( old_prefix + "mod_y.weight" ) new_state_dict[block_prefix + "norm1_context.linear.bias"] = original_state_dict.pop( old_prefix + "mod_y.bias" ) else: new_state_dict[block_prefix + "norm1_context.linear_1.weight"] = original_state_dict.pop( old_prefix + "mod_y.weight" ) new_state_dict[block_prefix + "norm1_context.linear_1.bias"] = original_state_dict.pop( old_prefix + "mod_y.bias" ) # Visual attention qkv_weight = original_state_dict.pop(old_prefix + "attn.qkv_x.weight") q, k, v = qkv_weight.chunk(3, dim=0) new_state_dict[block_prefix + "attn1.to_q.weight"] = q new_state_dict[block_prefix + "attn1.to_k.weight"] = k new_state_dict[block_prefix + "attn1.to_v.weight"] = v new_state_dict[block_prefix + "attn1.norm_q.weight"] = original_state_dict.pop( old_prefix + "attn.q_norm_x.weight" ) new_state_dict[block_prefix + "attn1.norm_k.weight"] = original_state_dict.pop( old_prefix + "attn.k_norm_x.weight" ) new_state_dict[block_prefix + "attn1.to_out.0.weight"] = original_state_dict.pop( old_prefix + "attn.proj_x.weight" ) new_state_dict[block_prefix + "attn1.to_out.0.bias"] = original_state_dict.pop(old_prefix + "attn.proj_x.bias") # Context attention qkv_weight = original_state_dict.pop(old_prefix + "attn.qkv_y.weight") q, k, v = qkv_weight.chunk(3, dim=0) new_state_dict[block_prefix + "attn1.add_q_proj.weight"] = q new_state_dict[block_prefix + "attn1.add_k_proj.weight"] = k new_state_dict[block_prefix + "attn1.add_v_proj.weight"] = v new_state_dict[block_prefix + "attn1.norm_added_q.weight"] = original_state_dict.pop( old_prefix + "attn.q_norm_y.weight" ) new_state_dict[block_prefix + "attn1.norm_added_k.weight"] = original_state_dict.pop( old_prefix + "attn.k_norm_y.weight" ) if i < num_layers - 1: new_state_dict[block_prefix + "attn1.to_add_out.weight"] = original_state_dict.pop( old_prefix + "attn.proj_y.weight" ) new_state_dict[block_prefix + "attn1.to_add_out.bias"] = original_state_dict.pop( old_prefix + "attn.proj_y.bias" ) # MLP new_state_dict[block_prefix + "ff.net.0.proj.weight"] = swap_proj_gate( original_state_dict.pop(old_prefix + "mlp_x.w1.weight") ) new_state_dict[block_prefix + "ff.net.2.weight"] = original_state_dict.pop(old_prefix + "mlp_x.w2.weight") if i < num_layers - 1: new_state_dict[block_prefix + "ff_context.net.0.proj.weight"] = swap_proj_gate( original_state_dict.pop(old_prefix + "mlp_y.w1.weight") ) new_state_dict[block_prefix + "ff_context.net.2.weight"] = original_state_dict.pop( old_prefix + "mlp_y.w2.weight" ) # Output layers new_state_dict["norm_out.linear.weight"] = swap_scale_shift( original_state_dict.pop("final_layer.mod.weight"), dim=0 ) new_state_dict["norm_out.linear.bias"] = swap_scale_shift(original_state_dict.pop("final_layer.mod.bias"), dim=0) new_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight") new_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias") new_state_dict["pos_frequencies"] = original_state_dict.pop("pos_frequencies") print("Remaining Keys:", original_state_dict.keys()) return new_state_dict def convert_mochi_vae_state_dict_to_diffusers(encoder_ckpt_path, decoder_ckpt_path): encoder_state_dict = load_file(encoder_ckpt_path, device="cpu") decoder_state_dict = load_file(decoder_ckpt_path, device="cpu") new_state_dict = {} # ==== Decoder ===== prefix = "decoder." # Convert conv_in new_state_dict[f"{prefix}conv_in.weight"] = decoder_state_dict.pop("blocks.0.0.weight") new_state_dict[f"{prefix}conv_in.bias"] = decoder_state_dict.pop("blocks.0.0.bias") # Convert block_in (MochiMidBlock3D) for i in range(3): # layers_per_block[-1] = 3 new_state_dict[f"{prefix}block_in.resnets.{i}.norm1.norm_layer.weight"] = decoder_state_dict.pop( f"blocks.0.{i+1}.stack.0.weight" ) new_state_dict[f"{prefix}block_in.resnets.{i}.norm1.norm_layer.bias"] = decoder_state_dict.pop( f"blocks.0.{i+1}.stack.0.bias" ) new_state_dict[f"{prefix}block_in.resnets.{i}.conv1.conv.weight"] = decoder_state_dict.pop( f"blocks.0.{i+1}.stack.2.weight" ) new_state_dict[f"{prefix}block_in.resnets.{i}.conv1.conv.bias"] = decoder_state_dict.pop( f"blocks.0.{i+1}.stack.2.bias" ) new_state_dict[f"{prefix}block_in.resnets.{i}.norm2.norm_layer.weight"] = decoder_state_dict.pop( f"blocks.0.{i+1}.stack.3.weight" ) new_state_dict[f"{prefix}block_in.resnets.{i}.norm2.norm_layer.bias"] = decoder_state_dict.pop( f"blocks.0.{i+1}.stack.3.bias" ) new_state_dict[f"{prefix}block_in.resnets.{i}.conv2.conv.weight"] = decoder_state_dict.pop( f"blocks.0.{i+1}.stack.5.weight" ) new_state_dict[f"{prefix}block_in.resnets.{i}.conv2.conv.bias"] = decoder_state_dict.pop( f"blocks.0.{i+1}.stack.5.bias" ) # Convert up_blocks (MochiUpBlock3D) down_block_layers = [6, 4, 3] # layers_per_block[-2], layers_per_block[-3], layers_per_block[-4] for block in range(3): for i in range(down_block_layers[block]): new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.norm1.norm_layer.weight"] = decoder_state_dict.pop( f"blocks.{block+1}.blocks.{i}.stack.0.weight" ) new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.norm1.norm_layer.bias"] = decoder_state_dict.pop( f"blocks.{block+1}.blocks.{i}.stack.0.bias" ) new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.conv1.conv.weight"] = decoder_state_dict.pop( f"blocks.{block+1}.blocks.{i}.stack.2.weight" ) new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.conv1.conv.bias"] = decoder_state_dict.pop( f"blocks.{block+1}.blocks.{i}.stack.2.bias" ) new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.norm2.norm_layer.weight"] = decoder_state_dict.pop( f"blocks.{block+1}.blocks.{i}.stack.3.weight" ) new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.norm2.norm_layer.bias"] = decoder_state_dict.pop( f"blocks.{block+1}.blocks.{i}.stack.3.bias" ) new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.conv2.conv.weight"] = decoder_state_dict.pop( f"blocks.{block+1}.blocks.{i}.stack.5.weight" ) new_state_dict[f"{prefix}up_blocks.{block}.resnets.{i}.conv2.conv.bias"] = decoder_state_dict.pop( f"blocks.{block+1}.blocks.{i}.stack.5.bias" ) new_state_dict[f"{prefix}up_blocks.{block}.proj.weight"] = decoder_state_dict.pop( f"blocks.{block+1}.proj.weight" ) new_state_dict[f"{prefix}up_blocks.{block}.proj.bias"] = decoder_state_dict.pop(f"blocks.{block+1}.proj.bias") # Convert block_out (MochiMidBlock3D) for i in range(3): # layers_per_block[0] = 3 new_state_dict[f"{prefix}block_out.resnets.{i}.norm1.norm_layer.weight"] = decoder_state_dict.pop( f"blocks.4.{i}.stack.0.weight" ) new_state_dict[f"{prefix}block_out.resnets.{i}.norm1.norm_layer.bias"] = decoder_state_dict.pop( f"blocks.4.{i}.stack.0.bias" ) new_state_dict[f"{prefix}block_out.resnets.{i}.conv1.conv.weight"] = decoder_state_dict.pop( f"blocks.4.{i}.stack.2.weight" ) new_state_dict[f"{prefix}block_out.resnets.{i}.conv1.conv.bias"] = decoder_state_dict.pop( f"blocks.4.{i}.stack.2.bias" ) new_state_dict[f"{prefix}block_out.resnets.{i}.norm2.norm_layer.weight"] = decoder_state_dict.pop( f"blocks.4.{i}.stack.3.weight" ) new_state_dict[f"{prefix}block_out.resnets.{i}.norm2.norm_layer.bias"] = decoder_state_dict.pop( f"blocks.4.{i}.stack.3.bias" ) new_state_dict[f"{prefix}block_out.resnets.{i}.conv2.conv.weight"] = decoder_state_dict.pop( f"blocks.4.{i}.stack.5.weight" ) new_state_dict[f"{prefix}block_out.resnets.{i}.conv2.conv.bias"] = decoder_state_dict.pop( f"blocks.4.{i}.stack.5.bias" ) # Convert proj_out (Conv1x1 ~= nn.Linear) new_state_dict[f"{prefix}proj_out.weight"] = decoder_state_dict.pop("output_proj.weight") new_state_dict[f"{prefix}proj_out.bias"] = decoder_state_dict.pop("output_proj.bias") print("Remaining Decoder Keys:", decoder_state_dict.keys()) # ==== Encoder ===== prefix = "encoder." new_state_dict[f"{prefix}proj_in.weight"] = encoder_state_dict.pop("layers.0.weight") new_state_dict[f"{prefix}proj_in.bias"] = encoder_state_dict.pop("layers.0.bias") # Convert block_in (MochiMidBlock3D) for i in range(3): # layers_per_block[0] = 3 new_state_dict[f"{prefix}block_in.resnets.{i}.norm1.norm_layer.weight"] = encoder_state_dict.pop( f"layers.{i+1}.stack.0.weight" ) new_state_dict[f"{prefix}block_in.resnets.{i}.norm1.norm_layer.bias"] = encoder_state_dict.pop( f"layers.{i+1}.stack.0.bias" ) new_state_dict[f"{prefix}block_in.resnets.{i}.conv1.conv.weight"] = encoder_state_dict.pop( f"layers.{i+1}.stack.2.weight" ) new_state_dict[f"{prefix}block_in.resnets.{i}.conv1.conv.bias"] = encoder_state_dict.pop( f"layers.{i+1}.stack.2.bias" ) new_state_dict[f"{prefix}block_in.resnets.{i}.norm2.norm_layer.weight"] = encoder_state_dict.pop( f"layers.{i+1}.stack.3.weight" ) new_state_dict[f"{prefix}block_in.resnets.{i}.norm2.norm_layer.bias"] = encoder_state_dict.pop( f"layers.{i+1}.stack.3.bias" ) new_state_dict[f"{prefix}block_in.resnets.{i}.conv2.conv.weight"] = encoder_state_dict.pop( f"layers.{i+1}.stack.5.weight" ) new_state_dict[f"{prefix}block_in.resnets.{i}.conv2.conv.bias"] = encoder_state_dict.pop( f"layers.{i+1}.stack.5.bias" ) # Convert down_blocks (MochiDownBlock3D) down_block_layers = [3, 4, 6] # layers_per_block[1], layers_per_block[2], layers_per_block[3] for block in range(3): new_state_dict[f"{prefix}down_blocks.{block}.conv_in.conv.weight"] = encoder_state_dict.pop( f"layers.{block+4}.layers.0.weight" ) new_state_dict[f"{prefix}down_blocks.{block}.conv_in.conv.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.0.bias" ) for i in range(down_block_layers[block]): # Convert resnets new_state_dict[ f"{prefix}down_blocks.{block}.resnets.{i}.norm1.norm_layer.weight" ] = encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.stack.0.weight") new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm1.norm_layer.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.stack.0.bias" ) new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv1.conv.weight"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.stack.2.weight" ) new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv1.conv.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.stack.2.bias" ) new_state_dict[ f"{prefix}down_blocks.{block}.resnets.{i}.norm2.norm_layer.weight" ] = encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.stack.3.weight") new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm2.norm_layer.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.stack.3.bias" ) new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv2.conv.weight"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.stack.5.weight" ) new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv2.conv.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.stack.5.bias" ) # Convert attentions qkv_weight = encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.attn_block.attn.qkv.weight") q, k, v = qkv_weight.chunk(3, dim=0) new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_q.weight"] = q new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_k.weight"] = k new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_v.weight"] = v new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_out.0.weight"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.attn_block.attn.out.weight" ) new_state_dict[f"{prefix}down_blocks.{block}.attentions.{i}.to_out.0.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.attn_block.attn.out.bias" ) new_state_dict[f"{prefix}down_blocks.{block}.norms.{i}.norm_layer.weight"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.attn_block.norm.weight" ) new_state_dict[f"{prefix}down_blocks.{block}.norms.{i}.norm_layer.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.attn_block.norm.bias" ) # Convert block_out (MochiMidBlock3D) for i in range(3): # layers_per_block[-1] = 3 # Convert resnets new_state_dict[f"{prefix}block_out.resnets.{i}.norm1.norm_layer.weight"] = encoder_state_dict.pop( f"layers.{i+7}.stack.0.weight" ) new_state_dict[f"{prefix}block_out.resnets.{i}.norm1.norm_layer.bias"] = encoder_state_dict.pop( f"layers.{i+7}.stack.0.bias" ) new_state_dict[f"{prefix}block_out.resnets.{i}.conv1.conv.weight"] = encoder_state_dict.pop( f"layers.{i+7}.stack.2.weight" ) new_state_dict[f"{prefix}block_out.resnets.{i}.conv1.conv.bias"] = encoder_state_dict.pop( f"layers.{i+7}.stack.2.bias" ) new_state_dict[f"{prefix}block_out.resnets.{i}.norm2.norm_layer.weight"] = encoder_state_dict.pop( f"layers.{i+7}.stack.3.weight" ) new_state_dict[f"{prefix}block_out.resnets.{i}.norm2.norm_layer.bias"] = encoder_state_dict.pop( f"layers.{i+7}.stack.3.bias" ) new_state_dict[f"{prefix}block_out.resnets.{i}.conv2.conv.weight"] = encoder_state_dict.pop( f"layers.{i+7}.stack.5.weight" ) new_state_dict[f"{prefix}block_out.resnets.{i}.conv2.conv.bias"] = encoder_state_dict.pop( f"layers.{i+7}.stack.5.bias" ) # Convert attentions qkv_weight = encoder_state_dict.pop(f"layers.{i+7}.attn_block.attn.qkv.weight") q, k, v = qkv_weight.chunk(3, dim=0) new_state_dict[f"{prefix}block_out.attentions.{i}.to_q.weight"] = q new_state_dict[f"{prefix}block_out.attentions.{i}.to_k.weight"] = k new_state_dict[f"{prefix}block_out.attentions.{i}.to_v.weight"] = v new_state_dict[f"{prefix}block_out.attentions.{i}.to_out.0.weight"] = encoder_state_dict.pop( f"layers.{i+7}.attn_block.attn.out.weight" ) new_state_dict[f"{prefix}block_out.attentions.{i}.to_out.0.bias"] = encoder_state_dict.pop( f"layers.{i+7}.attn_block.attn.out.bias" ) new_state_dict[f"{prefix}block_out.norms.{i}.norm_layer.weight"] = encoder_state_dict.pop( f"layers.{i+7}.attn_block.norm.weight" ) new_state_dict[f"{prefix}block_out.norms.{i}.norm_layer.bias"] = encoder_state_dict.pop( f"layers.{i+7}.attn_block.norm.bias" ) # Convert output layers new_state_dict[f"{prefix}norm_out.norm_layer.weight"] = encoder_state_dict.pop("output_norm.weight") new_state_dict[f"{prefix}norm_out.norm_layer.bias"] = encoder_state_dict.pop("output_norm.bias") new_state_dict[f"{prefix}proj_out.weight"] = encoder_state_dict.pop("output_proj.weight") print("Remaining Encoder Keys:", encoder_state_dict.keys()) return new_state_dict def main(args): if args.dtype is None: dtype = None if args.dtype == "fp16": dtype = torch.float16 elif args.dtype == "bf16": dtype = torch.bfloat16 elif args.dtype == "fp32": dtype = torch.float32 else: raise ValueError(f"Unsupported dtype: {args.dtype}") transformer = None vae = None if args.transformer_checkpoint_path is not None: converted_transformer_state_dict = convert_mochi_transformer_checkpoint_to_diffusers( args.transformer_checkpoint_path ) transformer = MochiTransformer3DModel() transformer.load_state_dict(converted_transformer_state_dict, strict=True) if dtype is not None: transformer = transformer.to(dtype=dtype) if args.vae_encoder_checkpoint_path is not None and args.vae_decoder_checkpoint_path is not None: vae = AutoencoderKLMochi(latent_channels=12, out_channels=3) converted_vae_state_dict = convert_mochi_vae_state_dict_to_diffusers( args.vae_encoder_checkpoint_path, args.vae_decoder_checkpoint_path ) vae.load_state_dict(converted_vae_state_dict, strict=True) if dtype is not None: vae = vae.to(dtype=dtype) text_encoder_id = "google/t5-v1_1-xxl" tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH) text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir) # Apparently, the conversion does not work anymore without this :shrug: for param in text_encoder.parameters(): param.data = param.data.contiguous() pipe = MochiPipeline( scheduler=FlowMatchEulerDiscreteScheduler(invert_sigmas=True), vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, ) pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB", push_to_hub=args.push_to_hub) if __name__ == "__main__": main(args)