import tensorflow as tf print("TensorFlow version:", tf.__version__) from tensorflow.keras.layers import Dense, Flatten, Conv2D from tensorflow.keras import Model mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # Add a channels dimension x_train = x_train[..., tf.newaxis].astype("float32") x_test = x_test[..., tf.newaxis].astype("float32") train_ds = tf.data.Dataset.from_tensor_slices( (x_train, y_train)).shuffle(10000).batch(32) test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) class UAF(Model): def __init__(self): super(UAF, self).__init__() self.A = tf.Variable(10.0, trainable=True) self.B = tf.Variable(0.0000012, trainable=True) self.C = tf.Variable(0.0000001, trainable=True) self.D = tf.Variable(9.0, trainable=True) self.E = tf.Variable(0.00000102, trainable=True) def call(self, input): P1 = (self.A*(input+self.B)) + (self.C * tf.math.square(input)) P2 = (self.D*(input-self.B)) P3 = tf.nn.relu(P1) + tf.math.log1p(tf.math.exp(-tf.math.abs(P1))) P4 = tf.nn.relu(P2) + tf.math.log1p(tf.math.exp(-tf.math.abs(P2))) return P3 - P4 + self.E class MyModel(Model): def __init__(self): super(MyModel, self).__init__() self.conv1 = Conv2D(32, 3, activation=None) self.flatten = Flatten() self.d1 = Dense(128, activation=None) self.d2 = Dense(10, activation=None) self.act0 = UAF() self.act1 = UAF() self.act2 = UAF() def call(self, x): x = self.conv1(x) x = self.act0(x) x = self.flatten(x) x = self.d1(x) x = self.act1(x) x = self.d2(x) return self.act2(x) # Create an instance of the model model = MyModel() loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = tf.keras.optimizers.Adam() train_loss = tf.keras.metrics.Mean(name='train_loss') train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') test_loss = tf.keras.metrics.Mean(name='test_loss') test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') @tf.function def train_step(images, labels): with tf.GradientTape() as tape: # training=True is only needed if there are layers with different # behavior during training versus inference (e.g. Dropout). predictions = model(images, training=True) loss = loss_object(labels, predictions) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) train_loss(loss) train_accuracy(labels, predictions) @tf.function def test_step(images, labels): # training=False is only needed if there are layers with different # behavior during training versus inference (e.g. Dropout). predictions = model(images, training=False) t_loss = loss_object(labels, predictions) test_loss(t_loss) test_accuracy(labels, predictions) EPOCHS = 20 for epoch in range(EPOCHS): # Reset the metrics at the start of the next epoch train_loss.reset_states() train_accuracy.reset_states() test_loss.reset_states() test_accuracy.reset_states() for images, labels in train_ds: train_step(images, labels) for test_images, test_labels in test_ds: test_step(test_images, test_labels) print( f'Epoch {epoch + 1}, ' f'Loss: {train_loss.result()}, ' f'Accuracy: {train_accuracy.result() * 100}, ' f'Test Loss: {test_loss.result()}, ' f'Test Accuracy: {test_accuracy.result() * 100}' )