AlcalaDataset's picture
new
717576e
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Add a channels dimension
x_train = x_train[..., tf.newaxis].astype("float32")
x_test = x_test[..., tf.newaxis].astype("float32")
train_ds = tf.data.Dataset.from_tensor_slices(
(x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
class UAF(Model):
def __init__(self):
super(UAF, self).__init__()
self.A = tf.Variable(10.0, trainable=True)
self.B = tf.Variable(0.0000012, trainable=True)
self.C = tf.Variable(0.0000001, trainable=True)
self.D = tf.Variable(9.0, trainable=True)
self.E = tf.Variable(0.00000102, trainable=True)
def call(self, input):
P1 = (self.A*(input+self.B)) + (self.C * tf.math.square(input))
P2 = (self.D*(input-self.B))
P3 = tf.nn.relu(P1) + tf.math.log1p(tf.math.exp(-tf.math.abs(P1)))
P4 = tf.nn.relu(P2) + tf.math.log1p(tf.math.exp(-tf.math.abs(P2)))
return P3 - P4 + self.E
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(32, 3, activation=None)
self.flatten = Flatten()
self.d1 = Dense(128, activation=None)
self.d2 = Dense(10, activation=None)
self.act0 = UAF()
self.act1 = UAF()
self.act2 = UAF()
def call(self, x):
x = self.conv1(x)
x = self.act0(x)
x = self.flatten(x)
x = self.d1(x)
x = self.act1(x)
x = self.d2(x)
return self.act2(x)
# Create an instance of the model
model = MyModel()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam()
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
# training=True is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=True)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
@tf.function
def test_step(images, labels):
# training=False is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=False)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
EPOCHS = 20
for epoch in range(EPOCHS):
# Reset the metrics at the start of the next epoch
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
for images, labels in train_ds:
train_step(images, labels)
for test_images, test_labels in test_ds:
test_step(test_images, test_labels)
print(
f'Epoch {epoch + 1}, '
f'Loss: {train_loss.result()}, '
f'Accuracy: {train_accuracy.result() * 100}, '
f'Test Loss: {test_loss.result()}, '
f'Test Accuracy: {test_accuracy.result() * 100}'
)