|
from __future__ import print_function |
|
import argparse |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.optim as optim |
|
from torchvision import datasets, transforms |
|
from torch.optim.lr_scheduler import StepLR |
|
|
|
|
|
|
|
class UAF(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.A = nn.Parameter(torch.tensor(30.0, requires_grad=True)) |
|
self.B = nn.Parameter(torch.tensor(0.0000012, requires_grad=True)) |
|
self.C = nn.Parameter(torch.tensor(0.0000001, requires_grad=True)) |
|
self.D = nn.Parameter(torch.tensor(29.0, requires_grad=True)) |
|
self.E = nn.Parameter(torch.tensor(0.00000102, requires_grad=True)) |
|
|
|
def forward(self, input): |
|
P1 = (self.A*(input+self.B)) + (self.C * torch.square(input)) |
|
P2 = (self.D*(input-self.B)) |
|
|
|
P3 = nn.ReLU()(P1) + torch.log1p(torch.exp(-torch.abs(P1))) |
|
P4 = nn.ReLU()(P2) + torch.log1p(torch.exp(-torch.abs(P2))) |
|
return P3 - P4 + self.E |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Module): |
|
def __init__(self): |
|
super(Net, self).__init__() |
|
self.conv1 = nn.Conv2d(1, 32, 3, 1) |
|
self.conv2 = nn.Conv2d(32, 64, 3, 1) |
|
self.dropout1 = nn.Dropout(0.25) |
|
self.dropout2 = nn.Dropout(0.5) |
|
self.fc1 = nn.Linear(9216, 128) |
|
self.fc2 = nn.Linear(128, 10) |
|
self.act0 = UAF() |
|
self.act1 = UAF() |
|
self.act2 = UAF() |
|
|
|
|
|
|
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.act0(x) |
|
x = self.conv2(x) |
|
x = self.act1(x) |
|
x = F.max_pool2d(x, 2) |
|
x = self.dropout1(x) |
|
x = torch.flatten(x, 1) |
|
x = self.fc1(x) |
|
x = self.act2(x) |
|
x = self.dropout2(x) |
|
x = self.fc2(x) |
|
output = F.log_softmax(x, dim=1) |
|
return output |
|
|
|
|
|
def train(args, model, device, train_loader, optimizer, epoch): |
|
model.train() |
|
for batch_idx, (data, target) in enumerate(train_loader): |
|
data, target = data.to(device), target.to(device) |
|
optimizer.zero_grad() |
|
output = model(data) |
|
loss = F.nll_loss(output, target) |
|
loss.backward() |
|
optimizer.step() |
|
if batch_idx % args.log_interval == 0: |
|
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( |
|
epoch, batch_idx * len(data), len(train_loader.dataset), |
|
100. * batch_idx / len(train_loader), loss.item())) |
|
if args.dry_run: |
|
break |
|
|
|
|
|
def test(model, device, test_loader): |
|
model.eval() |
|
test_loss = 0 |
|
correct = 0 |
|
with torch.no_grad(): |
|
for data, target in test_loader: |
|
data, target = data.to(device), target.to(device) |
|
output = model(data) |
|
test_loss += F.nll_loss(output, target, reduction='sum').item() |
|
pred = output.argmax(dim=1, keepdim=True) |
|
correct += pred.eq(target.view_as(pred)).sum().item() |
|
|
|
test_loss /= len(test_loader.dataset) |
|
|
|
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( |
|
test_loss, correct, len(test_loader.dataset), |
|
100. * correct / len(test_loader.dataset))) |
|
|
|
|
|
def main(): |
|
|
|
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') |
|
parser.add_argument('--batch-size', type=int, default=64, metavar='N', |
|
help='input batch size for training (default: 64)') |
|
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', |
|
help='input batch size for testing (default: 1000)') |
|
parser.add_argument('--epochs', type=int, default=14, metavar='N', |
|
help='number of epochs to train (default: 14)') |
|
parser.add_argument('--lr', type=float, default=0.89, metavar='LR', |
|
help='learning rate (default: 0.9)') |
|
parser.add_argument('--gamma', type=float, default=0.7, metavar='M', |
|
help='Learning rate step gamma (default: 0.7)') |
|
parser.add_argument('--no-cuda', action='store_true', default=False, |
|
help='disables CUDA training') |
|
parser.add_argument('--dry-run', action='store_true', default=False, |
|
help='quickly check a single pass') |
|
parser.add_argument('--seed', type=int, default=1, metavar='S', |
|
help='random seed (default: 1)') |
|
parser.add_argument('--log-interval', type=int, default=10, metavar='N', |
|
help='how many batches to wait before logging training status') |
|
parser.add_argument('--save-model', action='store_true', default=False, |
|
help='For Saving the current Model') |
|
args = parser.parse_args() |
|
use_cuda = not args.no_cuda and torch.cuda.is_available() |
|
|
|
torch.manual_seed(args.seed) |
|
|
|
device = torch.device("cuda" if use_cuda else "cpu") |
|
|
|
train_kwargs = {'batch_size': args.batch_size} |
|
test_kwargs = {'batch_size': args.test_batch_size} |
|
if use_cuda: |
|
cuda_kwargs = {'num_workers': 1, |
|
'pin_memory': True, |
|
'shuffle': True} |
|
train_kwargs.update(cuda_kwargs) |
|
test_kwargs.update(cuda_kwargs) |
|
|
|
transform=transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.1307,), (0.3081,)) |
|
]) |
|
dataset1 = datasets.MNIST('../data', train=True, download=True, |
|
transform=transform) |
|
dataset2 = datasets.MNIST('../data', train=False, |
|
transform=transform) |
|
train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) |
|
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) |
|
|
|
model = Net().to(device) |
|
optimizer = optim.Adadelta(model.parameters(), lr=args.lr) |
|
|
|
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) |
|
for epoch in range(1, args.epochs + 1): |
|
train(args, model, device, train_loader, optimizer, epoch) |
|
test(model, device, test_loader) |
|
scheduler.step() |
|
|
|
if args.save_model: |
|
torch.save(model.state_dict(), "mnist_cnn.pt") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|