|
import os.path as osp |
|
import sys |
|
import time |
|
|
|
|
|
import torch |
|
from torch.nn import Linear |
|
import torch.nn.functional as F |
|
from torch_geometric.datasets import Planetoid |
|
import torch_geometric.transforms as T |
|
from torch_geometric.nn import GCN2Conv |
|
from torch_geometric.nn.conv.gcn_conv import gcn_norm |
|
import numpy as np |
|
|
|
train_pred = [] |
|
train_act = [] |
|
|
|
test_pred = [] |
|
test_act = [] |
|
|
|
fold = int(sys.argv[1]) |
|
|
|
st = time.process_time() |
|
|
|
|
|
|
|
dataset = 'Cora' |
|
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', dataset) |
|
transform = T.Compose([T.NormalizeFeatures(), T.ToSparseTensor()]) |
|
dataset = Planetoid(path, dataset, transform=transform) |
|
data = dataset[0] |
|
data.adj_t = gcn_norm(data.adj_t) |
|
|
|
|
|
|
|
ims = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Net(torch.nn.Module): |
|
def __init__(self, hidden_channels, num_layers, alpha, theta, |
|
shared_weights=True, dropout=0.0): |
|
super(Net, self).__init__() |
|
|
|
self.lins = torch.nn.ModuleList() |
|
self.lins.append(Linear(dataset.num_features, hidden_channels)) |
|
self.lins.append(Linear(hidden_channels, dataset.num_classes)) |
|
|
|
self.convs = torch.nn.ModuleList() |
|
for layer in range(num_layers): |
|
self.convs.append( |
|
GCN2Conv(hidden_channels, alpha, theta, layer + 1, |
|
shared_weights, normalize=False)) |
|
|
|
self.dropout = dropout |
|
|
|
self.A = torch.nn.Parameter(torch.tensor(1.1, requires_grad=True)) |
|
self.B = torch.nn.Parameter(torch.tensor(-0.01, requires_grad=True)) |
|
self.C = torch.nn.Parameter(torch.tensor(1e-9, requires_grad=True)) |
|
self.D = torch.nn.Parameter(torch.tensor(-0.9, requires_grad=True)) |
|
self.E = torch.nn.Parameter(torch.tensor(0.00001, requires_grad=True)) |
|
|
|
|
|
def UAF(self, input): |
|
ims.append(np.array([self.A.cpu().detach().item(),self.B.cpu().detach().item(),self.C.cpu().detach().item(),self.D.cpu().detach().item(),self.E.cpu().detach().item()])) |
|
P1 = (self.A*(input+self.B)) + torch.clamp((self.C * torch.square(input)),-100.0,100.0) |
|
P2 = (self.D*(input-self.B)) |
|
|
|
P3 = torch.nn.ReLU()(P1) + torch.log1p(torch.exp(-torch.abs(P1))) |
|
P4 = torch.nn.ReLU()(P2) + torch.log1p(torch.exp(-torch.abs(P2))) |
|
return P3 - P4 + self.E |
|
|
|
def forward(self, x, adj_t): |
|
x = F.dropout(x, self.dropout, training=self.training) |
|
x = x_0 = self.UAF(self.lins[0](x)) |
|
|
|
for conv in self.convs: |
|
x = F.dropout(x, self.dropout, training=self.training) |
|
x = conv(x, x_0, adj_t) |
|
x = self.UAF(x) |
|
|
|
x = F.dropout(x, self.dropout, training=self.training) |
|
x = self.lins[1](x) |
|
|
|
return x.log_softmax(dim=-1) |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
model = Net(hidden_channels=64, num_layers=64, alpha=0.1, theta=0.5, |
|
shared_weights=True, dropout=0.6).to(device) |
|
data = data.to(device) |
|
optimizer = torch.optim.Adam([ |
|
dict(params=model.convs.parameters(), weight_decay=0.01), |
|
dict(params=model.lins.parameters(), weight_decay=5e-4) |
|
], lr=0.01) |
|
|
|
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', |
|
factor=0.7, patience=50, |
|
min_lr=0.00001) |
|
|
|
|
|
optimizer2 = torch.optim.Adam([ |
|
dict(params=model.A), |
|
dict(params=model.B), |
|
dict(params=model.C, weight_decay=1e5), |
|
dict(params=model.D), |
|
dict(params=model.E) |
|
], lr=0.005) |
|
scheduler2 = torch.optim.lr_scheduler.StepLR(optimizer2, step_size=240, gamma=1e-10) |
|
|
|
|
|
|
|
def train(): |
|
model.train() |
|
optimizer2.zero_grad() |
|
optimizer.zero_grad() |
|
out = model(data.x, data.adj_t) |
|
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask]) |
|
|
|
train_pred_temp = out[data.train_mask].cpu().detach().numpy() |
|
train_act_temp = data.y[data.train_mask].cpu().detach().numpy() |
|
|
|
train_pred.append(train_pred_temp) |
|
train_act.append(train_act_temp) |
|
|
|
|
|
loss.backward() |
|
optimizer.step() |
|
optimizer2.step() |
|
return float(loss) |
|
|
|
|
|
@torch.no_grad() |
|
def test(): |
|
model.eval() |
|
pred, accs = model(data.x, data.adj_t).argmax(dim=-1), [] |
|
|
|
test_pred_temp = pred[data.test_mask].cpu().detach().numpy() |
|
test_act_temp = data.y[data.test_mask].cpu().detach().numpy() |
|
|
|
test_pred.append(test_pred_temp) |
|
test_act.append(test_act_temp) |
|
|
|
for _, mask in data('train_mask', 'val_mask', 'test_mask'): |
|
accs.append(int((pred[mask] == data.y[mask]).sum()) / int(mask.sum())) |
|
return accs |
|
|
|
|
|
best_val_acc = test_acc = 0 |
|
for epoch in range(1, 1001): |
|
loss = train() |
|
train_acc, val_acc, tmp_test_acc = test() |
|
if val_acc > best_val_acc: |
|
best_val_acc = val_acc |
|
test_acc = tmp_test_acc |
|
lr = scheduler.optimizer.param_groups[0]['lr'] |
|
if (epoch == 241): |
|
scheduler.optimizer.param_groups[0]['lr'] = 0.05 |
|
scheduler.step(-val_acc) |
|
scheduler2.step() |
|
|
|
print(f'Epoch: {epoch:04d}, Loss: {loss:.4f} Train: {train_acc:.4f}, ' |
|
f'lr: {lr:.7f}, Test: {tmp_test_acc:.4f}, ' |
|
f'Final Test: {test_acc:.4f}') |
|
|
|
|
|
|
|
elapsed_time = time.process_time() - st |
|
|
|
np.save("time_" + str(fold), np.array([elapsed_time])) |
|
|
|
|
|
np.save("train_pred_" + str(fold), train_pred) |
|
np.save("train_act_" + str(fold), train_act) |
|
|
|
|
|
np.save("test_pred_" + str(fold), test_pred) |
|
np.save("test_act_" + str(fold), test_act) |
|
|
|
|
|
ims = np.asarray(ims) |
|
np.save("ims_" + str(fold),ims) |
|
|