AlcalaDataset's picture
new
717576e
import os.path as osp
import sys
import time
import torch
from torch.nn import Linear
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
import torch_geometric.transforms as T
from torch_geometric.nn import GCN2Conv
from torch_geometric.nn.conv.gcn_conv import gcn_norm
import numpy as np
train_pred = []
train_act = []
test_pred = []
test_act = []
fold = int(sys.argv[1])
st = time.process_time()
dataset = 'Cora'
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', dataset)
transform = T.Compose([T.NormalizeFeatures(), T.ToSparseTensor()])
dataset = Planetoid(path, dataset, transform=transform)
data = dataset[0]
data.adj_t = gcn_norm(data.adj_t) # Pre-process GCN normalization.
ims = []
class Net(torch.nn.Module):
def __init__(self, hidden_channels, num_layers, alpha, theta,
shared_weights=True, dropout=0.0):
super(Net, self).__init__()
self.lins = torch.nn.ModuleList()
self.lins.append(Linear(dataset.num_features, hidden_channels))
self.lins.append(Linear(hidden_channels, dataset.num_classes))
self.convs = torch.nn.ModuleList()
for layer in range(num_layers):
self.convs.append(
GCN2Conv(hidden_channels, alpha, theta, layer + 1,
shared_weights, normalize=False))
self.dropout = dropout
self.A = torch.nn.Parameter(torch.tensor(1.1, requires_grad=True))
self.B = torch.nn.Parameter(torch.tensor(-0.01, requires_grad=True))
self.C = torch.nn.Parameter(torch.tensor(1e-9, requires_grad=True))
self.D = torch.nn.Parameter(torch.tensor(-0.9, requires_grad=True))
self.E = torch.nn.Parameter(torch.tensor(0.00001, requires_grad=True))
def UAF(self, input):
ims.append(np.array([self.A.cpu().detach().item(),self.B.cpu().detach().item(),self.C.cpu().detach().item(),self.D.cpu().detach().item(),self.E.cpu().detach().item()]))
P1 = (self.A*(input+self.B)) + torch.clamp((self.C * torch.square(input)),-100.0,100.0)
P2 = (self.D*(input-self.B))
P3 = torch.nn.ReLU()(P1) + torch.log1p(torch.exp(-torch.abs(P1)))
P4 = torch.nn.ReLU()(P2) + torch.log1p(torch.exp(-torch.abs(P2)))
return P3 - P4 + self.E
def forward(self, x, adj_t):
x = F.dropout(x, self.dropout, training=self.training)
x = x_0 = self.UAF(self.lins[0](x))
for conv in self.convs:
x = F.dropout(x, self.dropout, training=self.training)
x = conv(x, x_0, adj_t)
x = self.UAF(x)
x = F.dropout(x, self.dropout, training=self.training)
x = self.lins[1](x)
return x.log_softmax(dim=-1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net(hidden_channels=64, num_layers=64, alpha=0.1, theta=0.5,
shared_weights=True, dropout=0.6).to(device)
data = data.to(device)
optimizer = torch.optim.Adam([
dict(params=model.convs.parameters(), weight_decay=0.01),
dict(params=model.lins.parameters(), weight_decay=5e-4)
], lr=0.01)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min',
factor=0.7, patience=50,
min_lr=0.00001)
optimizer2 = torch.optim.Adam([
dict(params=model.A),
dict(params=model.B),
dict(params=model.C, weight_decay=1e5),
dict(params=model.D),
dict(params=model.E)
], lr=0.005)
scheduler2 = torch.optim.lr_scheduler.StepLR(optimizer2, step_size=240, gamma=1e-10)
def train():
model.train()
optimizer2.zero_grad()
optimizer.zero_grad()
out = model(data.x, data.adj_t)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
train_pred_temp = out[data.train_mask].cpu().detach().numpy()
train_act_temp = data.y[data.train_mask].cpu().detach().numpy()
train_pred.append(train_pred_temp)
train_act.append(train_act_temp)
loss.backward()
optimizer.step()
optimizer2.step()
return float(loss)
@torch.no_grad()
def test():
model.eval()
pred, accs = model(data.x, data.adj_t).argmax(dim=-1), []
test_pred_temp = pred[data.test_mask].cpu().detach().numpy()
test_act_temp = data.y[data.test_mask].cpu().detach().numpy()
test_pred.append(test_pred_temp)
test_act.append(test_act_temp)
for _, mask in data('train_mask', 'val_mask', 'test_mask'):
accs.append(int((pred[mask] == data.y[mask]).sum()) / int(mask.sum()))
return accs
best_val_acc = test_acc = 0
for epoch in range(1, 1001):
loss = train()
train_acc, val_acc, tmp_test_acc = test()
if val_acc > best_val_acc:
best_val_acc = val_acc
test_acc = tmp_test_acc
lr = scheduler.optimizer.param_groups[0]['lr']
if (epoch == 241):
scheduler.optimizer.param_groups[0]['lr'] = 0.05
scheduler.step(-val_acc)
scheduler2.step()
print(f'Epoch: {epoch:04d}, Loss: {loss:.4f} Train: {train_acc:.4f}, '
f'lr: {lr:.7f}, Test: {tmp_test_acc:.4f}, '
f'Final Test: {test_acc:.4f}')
elapsed_time = time.process_time() - st
np.save("time_" + str(fold), np.array([elapsed_time]))
np.save("train_pred_" + str(fold), train_pred)
np.save("train_act_" + str(fold), train_act)
np.save("test_pred_" + str(fold), test_pred)
np.save("test_act_" + str(fold), test_act)
ims = np.asarray(ims)
np.save("ims_" + str(fold),ims)