Bishdata commited on
Commit
e9bc2a1
·
verified ·
1 Parent(s): 2f381c6

trained locally

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v3
16
+ type: LunarLander-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -84.57 +/- 101.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **LunarLander-v3**
25
+ This is a trained model of a **DQN** agent playing **LunarLander-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7480f7cf72e0>", "_build": "<function DQNPolicy._build at 0x7480f7cf7370>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7480f7cf7400>", "forward": "<function DQNPolicy.forward at 0x7480f7cf7490>", "_predict": "<function DQNPolicy._predict at 0x7480f7cf7520>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7480f7cf75b0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7480f7cf7640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7480ea905e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 500096, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733359075972309740, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAEtFn75XqsE+NlvoPEOnyL2BKkq/xzuBvgAAAAAAAAAAnW2FPmTgmT8hOKK8Kd3EvBTvebwNFdW9AAAAAAAAAAAtyAG+obOiP9uIj7sscN28ob+jOQuDLj0AAAAAAAAAAHDTc76UdI0/0WfKvPDTML2ys1k9gNxvPQAAAAAAAAAAmr3WvRvjgT/V/GM7y7MEvPpmQrz5gZi9AAAAAAAAAACTRC8+0eqWP/PbTbwRdR+8te2VO1VoHL0AAAAAAAAAADP/bjx0pZ8/RdxzPMC12ryTqXE7tnHVPAAAAAAAAAAAgHhTPdZD4z662Zm+bnITvqTihL4aFhy/AAAAAAAAAACa1mO9e1GmP+qS77xn5YS8qKlRvW/ACz4AAAAAAAAAANqSTz7Q15E/m20dPVz0orze+CI+P4KdPQAAAAAAAAAAwFW2PUZzqT8tr489GVyHPIYe6j10RKS9AAAAAAAAAACahfG7lbStPyFwtDzFZ6u7I3RWvdY96rwAAAAAAAAAAOZ6dT15I6k/JhmEvO6QhDyOgb68DksFPQAAAAAAAAAAZp2vPakvnj9a/nO97ZmBOwxuPr4linw9AAAAAAAAAAAAYJm7L2WpP4j/I7wVFf67R06gvL3BoD0AAAAAAAAAADPTMDwERZg/z08yvBbgbzwSXkW9JAKSPAAAAAAAAAAADeOWvWJcrD8QQZk8piHNvJqYaTyA7BA9AAAAAAAAAACaq8S8IlyuP4i56jt9fuO8fl+hvCY1B70AAAAAAAAAAFpBxz3kdKs/KoeOPR4ylTze6PY95q7yvAAAAAAAAAAAGoFwvVwWnT9uFjk9LajbO+Qc8DySfQs9AAAAAAAAAABmzRa9HC6fP3bCcjycBpq87DBdvIJai70AAAAAAAAAADo2oz5CzIU/bu2BvC6t87wN3J+8Sk2OvQAAAAAAAAAATWWrPXAQoD+R4L+8k+EVvTHuwrxl/vQ8AAAAAAAAAABNWi49E76ePy7TyLtH8Eq8n9USvZ5+2b0AAAAAAAAAAIarjj7ZJZg/fd59vLy8Jr4YMRM/xTrRvgAAAAAAAAAAjbzePXvStj+6Nj0+9iQevnjH8L3OY9U+AAAAAAAAAAAmrSQ+b+ufP36YoLoG6a+8Bc/xPEp/hT0AAAAAAAAAAID1jT2VPbU/wryIPs5v2rxs0C4+cmiYPgAAAAAAAAAAwI7dvTkLoT9/H5Y8p3UNPPEVwDwAc7s8AAAAAAAAAADN8DO+1TSQPzsq1L0q3dy+/dzRPh4Dwr4AAAAAAAAAANoIVD6HS4s//tlIPWnV4rxw/3w8oDmDPAAAAAAAAAAA88epPd1JrD9tON+8LpruvLISYr3ys9e7AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJZen76MucI+AgoPPdkNm71p70a/gcOWvgAAAAAAAAAAdo6FPhTymT9+Kyy8erREO22zJLykoBC+AAAAAAAAAABawgG+kMeiP27fpDs60aC5+kfuulbcoDsAAAAAAAAAAHCac75VlI0//ks4vN9kKL13tU09oviOPQAAAAAAAAAAGrzWvQ/pgT8alQC8/UPVvCdmBbxi7629AAAAAAAAAACTai8+//GWP7oLHrtGUog86X3UOy50ob0AAAAAAAAAADNXbDwjuZ8/emSquhGj9LwSSRw7v8InPAAAAAAAAAAAzQFhPebd5D75Vam+pKogvquNar7ODyC/AAAAAAAAAABN7GK9oF2mPz3qr7yFlCQ88JxtvViC1z0AAAAAAAAAAAYkTz4u5pE/m8FlPTvLhLzQCB8+SZC1PQAAAAAAAAAADfu0PVJnqT/FG3w9IPYuPSZV8j0+kDq9AAAAAAAAAADNRPi7Z7itPyMIBz1+TyC9/ZhQvbIkXbwAAAAAAAAAALMSdj2RF6k/ivEzvIbE3LzT1cu8DwQkPQAAAAAAAAAAmsWwPQgtnj/l+3+9rBPnuyuWQb7pp409AAAAAAAAAADNZJe78mqpPzVimTljapo8B3XAvPl/GD0AAAAAAAAAAAB2Mjw+Opg/nsG6vG9qTbyHBEm9CMUlPAAAAAAAAAAAjU6XvdZurD/7XYk88CADvYicTDxdugY9AAAAAAAAAADNHsW8mHCuP3AK0LuhqiK9MtqTvMLDOL0AAAAAAAAAAE3cxT2NZ6s/VkCIPVJuEDxz8fk9i6MfvQAAAAAAAAAAAG1yvWURnT/1L2M9OwQLPfAp4jygcey7AAAAAAAAAACzRBe99DufPxnFtrqnUta8GHMlvAqJqr0AAAAAAAAAAKBPoz4o4oU/Ye2BvBW4Sbs3ZoO8TE2OvQAAAAAAAAAAJtirPW8roD+N4L+8bZ0ivB4uz7xu/vQ8AAAAAAAAAADm0i49HseeP0OXtrxgsSW9gyv6vACh9L0AAAAAAAAAAHDWjj6Go5g/skPNvIxdEL4qbBg/noi2vgAAAAAAAAAAAIbaPa9Ftz/t/yo+1eQmvoS6Db4wQtA+AAAAAAAAAACzpyQ+OPufP/UQT7yOvaY79xvXPLYg4z0AAAAAAAAAAGYviD0MULU/+i+XPtKMbb0ikx8+EaafPgAAAAAAAAAA8/TdvdgEoT/imY47o+K9vJq2tjxriPM7AAAAAAAAAABNszK+unaRP2LNvr3H2OC+WJDbPoP5x74AAAAAAAAAAC2GUz7wX4s/27NrPWDPrLoX4G88SqeTvAAAAAAAAAAAjViqPVVfrD/OaRq9vgshvZO5YL26pWG8AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_episode_num": 958, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00019199999999996997, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDJuhTOxB6MAWyUTT4BjAF0lEdAkAGA+yJKrnV9lChoBkdAaVTHLA57xGgHTV4CaAhHQJAEQjmjj711fZQoaAZHQHEm3lGPPs1oB01ZAWgIR0CQBqFRYRukdX2UKGgGR0AnQbfgrH2iaAdL22gIR0CQB7fcer+6dX2UKGgGR8Bix6xxDLKWaAdN6ANoCEdAkAhxMJx//nV9lChoBkdAaM60/GEPD2gHTWMCaAhHQJATnBacI7h1fZQoaAZHQG27qKpDNQloB03pAWgIR0CQE/oSL61tdX2UKGgGR8Beo/JV81GcaAdN6ANoCEdAkBeJ9NN8E3V9lChoBkdAbLJ+lTFVDWgHTbQBaAhHQJAasAbQ1Jl1fZQoaAZHwF3DNtqHoHNoB03oA2gIR0CQHdcsUZeidX2UKGgGR8BjIOMKkVN6aAdNDQFoCEdAkB/Ac94eLnV9lChoBkfAUSCCXhOxjmgHTegDaAhHQJAhIbJfYz11fZQoaAZHQGR7AH/tICloB01cAmgIR0CQIg08/2TQdX2UKGgGR0BpHwpnYg7paAdN4AJoCEdAkCNpI6KceHV9lChoBkdAardTjNpudmgHTWACaAhHQJAq0meDnNh1fZQoaAZHQGax35WRzRxoB03WAWgIR0CQL8Pkq+ajdX2UKGgGR0Bq0txlxwQ2aAdNZwFoCEdAkDBEbtJFs3V9lChoBkfAXN0384xUN2gHTegDaAhHQJAwyLQ5WBB1fZQoaAZHwF11Gh24d6toB03oA2gIR0CQNYs+FDfFdX2UKGgGR8BfJD2WY4Q0aAdN6ANoCEdAkDcF2JSBLHV9lChoBkfAY7zG9YfW+WgHTegDaAhHQJA3zeVLSNR1fZQoaAZHwGDPWH1vl2hoB03oA2gIR0CQOWsJpnHvdX2UKGgGR8BRaNqpLmITaAdNMAFoCEdAkD3Oj7ALzHV9lChoBkfAVsmwV0tAcGgHTegDaAhHQJBAVIBikO91fZQoaAZHQGet3yy2QXBoB00cAmgIR0CQRczollbvdX2UKGgGR8BdGcy8BdUsaAdN6ANoCEdAkE2sma6ST3V9lChoBkfAXcJSBK+SKWgHTegDaAhHQJBPYCYCyQh1fZQoaAZHwF+quMuOCGxoB03oA2gIR0CQUYo9cKPXdX2UKGgGR8BgpBtWMju8aAdN6ANoCEdAkFna5oXbd3V9lChoBkdAaDIzl90A92gHTWUCaAhHQJBeZ6IFeOZ1fZQoaAZHwGAjGw7kn1FoB03oA2gIR0CQYeSOBDohdX2UKGgGR8BiA9NDc/MXaAdN6ANoCEdAkGICeiBXjnV9lChoBkfARzckSmIj4mgHTVoCaAhHQJBoAURFqi51fZQoaAZHwFwXgX/HYHxoB03oA2gIR0CQa1TfixVydX2UKGgGR8BUdAYP5HmSaAdN6ANoCEdAkGw/ms/6f3V9lChoBkfAYOjnSOR1YGgHTegDaAhHQJBtE1LrX191fZQoaAZHwGLgzSkTHsFoB0vyaAhHQJBvALw4KhN1fZQoaAZHwFrY9aEBbOhoB03oA2gIR0CQcBC/47A+dX2UKGgGR8BgnlTLns9kaAdN6ANoCEdAkHCKagElmnV9lChoBkfAWL4YekpI+WgHTegDaAhHQJB4Ds7dSEV1fZQoaAZHwGLsNmUW2w5oB03oA2gIR0CQfAaP0Zm7dX2UKGgGR0Bmpvxc3VCpaAdNvgJoCEdAkHzQBT4tYnV9lChoBkdAZa/5Rjz7M2gHTTYDaAhHQJB9tjEvTPV1fZQoaAZHwESPz3AVO9FoB0vYaAhHQJCIN4/u9e11fZQoaAZHwFtfCqIacZtoB03oA2gIR0CQiNt52QnydX2UKGgGR8BWA6QV9F4LaAdN6ANoCEdAkIk1AE+xGHV9lChoBkdAM4qo2n8892gHTRsBaAhHQJCJXQF9roJ1fZQoaAZHQGhw14X40uVoB02cAWgIR0CQixdj5KvndX2UKGgGR0BneQ0dilSCaAdNxQJoCEdAkJDkWqLjxXV9lChoBkfAYEqarFOwgWgHTegDaAhHQJCUV5nlGPR1fZQoaAZHwF7kuYx+KCRoB03oA2gIR0CQlcbPyCnQdX2UKGgGR8BklyBTXJ5naAdN6ANoCEdAkJf4Zl4C63V9lChoBkdAcHSFN+LFXWgHTdABaAhHQJCiX6/IsAh1fZQoaAZHwGLKl2V3Ux5oB03oA2gIR0CQo2hZha1UdX2UKGgGR8Bc9G8Empl0aAdN6ANoCEdAkKPgTh5xBHV9lChoBkfAYGbLSNOuaGgHTegDaAhHQJCkUt8NQTF1fZQoaAZHwFyYUy57PY5oB03oA2gIR0CQqFhWHUMHdX2UKGgGR8BkKWp0fYBeaAdN6ANoCEdAkKmnBk7OmnV9lChoBkfAYkKKAJ9iMGgHTegDaAhHQJCqWgVXV9Z1fZQoaAZHwGAHFSKm8/VoB03oA2gIR0CQq8vpyIYWdX2UKGgGR0ByIAg7o0Q9aAdNGAFoCEdAkK69nkDIR3V9lChoBkfAYQUh+OOsDGgHTegDaAhHQJCyJthuwX91fZQoaAZHQG10p9y925hoB00hAmgIR0CQs9Wu5jH5dX2UKGgGR8Bc3afFrEcbaAdN6ANoCEdAkLdc7hegMHV9lChoBkfAZIgOTaCcw2gHTUgBaAhHQJC5oxfv4M51fZQoaAZHQGwtNqgyuZFoB03lAWgIR0CQvFIPK+zudX2UKGgGR8Bdz88TzundaAdN6ANoCEdAkL5XktEofHV9lChoBkdAb8gBczImxGgHTaEBaAhHQJC/mT/yXld1fZQoaAZHwFmHWAwwj+toB03oA2gIR0CQv8RZU1htdX2UKGgGR0BvB+szVMEiaAdNDANoCEdAkMDFB2OhkHV9lChoBkdAZg62KEWZZ2gHTf0CaAhHQJDDSzVtoBd1fZQoaAZHQGpfisny/bloB00sAmgIR0CQw/zNliBodX2UKGgGR8BiGDGecx0uaAdN6ANoCEdAkMx8vduYQnV9lChoBkfAYbhYQJ5VwWgHTegDaAhHQJDPa0VrRBx1fZQoaAZHwFrBFmFrVONoB03oA2gIR0CQz4Z6lchUdX2UKGgGR0Bwodj2Bas7aAdNYAFoCEdAkNZy9ugpSnV9lChoBkfAWu3j81n/UGgHTegDaAhHQJDYdWvKU3Z1fZQoaAZHwGLpXsgMc6xoB03oA2gIR0CQ3MH2h7E6dX2UKGgGR0Btlb3bmEGraAdN3wFoCEdAkN1bLIPsiXV9lChoBkfAXvln8Kohp2gHTegDaAhHQJDofofSx7l1fZQoaAZHwGAqv8hs67xoB03oA2gIR0CQ6VX8wYcedX2UKGgGR8BksXoHLRrraAdN6ANoCEdAkOpQTh5xBHV9lChoBkfAYYD1Ng0CR2gHTegDaAhHQJD1+a8YhuB1fZQoaAZHwF7Op0OmR/5oB03oA2gIR0CQ9wtUGVzIdX2UKGgGR0Bl9RKaoddWaAdNAQNoCEdAkPg9sJpnH3V9lChoBkdAcVqJRfnfVWgHTXABaAhHQJD4PoxHoX91fZQoaAZHwF2dWilBQepoB03oA2gIR0CQ+T544ZMtdX2UKGgGR8BN3nWBjFyaaAdNNAJoCEdAkQDtFnZkCnV9lChoBkfAYvO9Gqgh82gHTegDaAhHQJEErFMqSYB1fZQoaAZHQGipsJQcghdoB02xAmgIR0CREqpVCHARdX2UKGgGR8BUpfo3aSLZaAdN6ANoCEdAkRP7drO7hHV9lChoBkfATVAnv2GqP2gHTegDaAhHQJEVNAHE/B51fZQoaAZHwFkX72tdRixoB03oA2gIR0CRFbipvP1MdX2UKGgGR0BvALa/RE4OaAdNSgJoCEdAkRgRkRSP2nV9lChoBkdAbn9+0gKWs2gHTQkCaAhHQJEYPk5p8F91fZQoaAZHwEsZ4VymygRoB03oA2gIR0CRG3oPTXrddX2UKGgGR8BdDNoFmnO0aAdN6ANoCEdAkR0ePq9oOHV9lChoBkfAXgRxffGdZ2gHTegDaAhHQJEeBJ17pmp1fZQoaAZHwGHKhyKekHloB03oA2gIR0CRI9/RmbsodX2UKGgGR8BgMsUoKD02aAdN6ANoCEdAkSo7ORkmQnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7800, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAACDAAAAgwAAAIMEAACDB2w/JwAAAIMEAAACAAAAAgJRoCksIhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMBGhpZ2iUaBIoliAAAAAAAAAAAAAgQAAAIEAAACBBAAAgQdsPyUAAACBBAACAPwAAgD+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGgcSwiFlGgVdJRSlIwIbG93X3JlcHKUjFtbIC0yLjUgICAgICAgIC0yLjUgICAgICAgLTEwLiAgICAgICAgLTEwLiAgICAgICAgIC02LjI4MzE4NTUgLTEwLgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWyAyLjUgICAgICAgIDIuNSAgICAgICAxMC4gICAgICAgIDEwLiAgICAgICAgIDYuMjgzMTg1NSAxMC4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [8], "low": "[ -2.5 -2.5 -10. -10. -6.2831855 -10.\n -0. -0. ]", "bounded_below": "[ True True True True True True True True]", "high": "[ 2.5 2.5 10. 10. 6.2831855 10.\n 1. 1. ]", "bounded_above": "[ True True True True True True True True]", "low_repr": "[ -2.5 -2.5 -10. -10. -6.2831855 -10.\n -0. -0. ]", "high_repr": "[ 2.5 2.5 10. 10. 6.2831855 10.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVggEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRZ9OUBx7lwBp+NPnnV86FlgCMA2luY5SKESmB7GD0PbGKmgYRtam+Da4AdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSjhvA091YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 32, "buffer_size": 50000, "batch_size": 64, "learning_starts": 1000, "tau": 0.01, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x74811c3c9e10>", "add": "<function ReplayBuffer.add at 0x74811c3c9ea0>", "sample": "<function ReplayBuffer.sample at 0x74811c3c9f30>", "_get_samples": "<function ReplayBuffer._get_samples at 0x74811c3c9fc0>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x74811c3ca050>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x748128fda2c0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.02, "exploration_fraction": 0.1, "target_update_interval": 1000, "_n_calls": 31256, "max_grad_norm": 10, "exploration_rate": 0.02, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVswMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovaG9tZS9vcmVuL3dvcmsvbGV3aXMvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFovaG9tZS9vcmVuL3dvcmsvbGV3aXMvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjAg8bGFtYmRhPpSMDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g+fZR9lChoGIwEZnVuY5RoJ4wZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RoKX2UaCtOaCxOaC1oGWguTmgvaDFHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhHXZRoSX2UdYaUhlIwLg=="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVbwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovaG9tZS9vcmVuL3dvcmsvbGV3aXMvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtzQwYMAQQBGAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFovaG9tZS9vcmVuL3dvcmsvbGV3aXMvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHSlSlGgdKVKUh5R0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgvdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP5R64UeuFHuFlFKUaDdHP7mZmZmZmZqFlFKUaDdHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.9.3-76060903-generic-x86_64-with-glibc2.35 # 202405300957~1732141768~22.04~f2697e1 SMP PREEMPT_DYNAMIC Wed N", "Python": "3.10.12", "Stable-Baselines3": "2.4.0", "PyTorch": "2.5.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "3.1.0", "Gymnasium": "1.0.0", "OpenAI Gym": "0.26.2"}}
dqn-LunarLander-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:596c5ec94638d40408e55210067b573417aa465c6a9e1624ed6d81fa875f0eb2
3
+ size 110090
dqn-LunarLander-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.4.0
dqn-LunarLander-v3/data ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7480f7cf72e0>",
9
+ "_build": "<function DQNPolicy._build at 0x7480f7cf7370>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7480f7cf7400>",
11
+ "forward": "<function DQNPolicy.forward at 0x7480f7cf7490>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7480f7cf7520>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7480f7cf75b0>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7480f7cf7640>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7480ea905e00>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {},
20
+ "num_timesteps": 500096,
21
+ "_total_timesteps": 500000,
22
+ "_num_timesteps_at_start": 0,
23
+ "seed": null,
24
+ "action_noise": null,
25
+ "start_time": 1733359075972309740,
26
+ "learning_rate": 0.001,
27
+ "tensorboard_log": null,
28
+ "_last_obs": {
29
+ ":type:": "<class 'numpy.ndarray'>",
30
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAEtFn75XqsE+NlvoPEOnyL2BKkq/xzuBvgAAAAAAAAAAnW2FPmTgmT8hOKK8Kd3EvBTvebwNFdW9AAAAAAAAAAAtyAG+obOiP9uIj7sscN28ob+jOQuDLj0AAAAAAAAAAHDTc76UdI0/0WfKvPDTML2ys1k9gNxvPQAAAAAAAAAAmr3WvRvjgT/V/GM7y7MEvPpmQrz5gZi9AAAAAAAAAACTRC8+0eqWP/PbTbwRdR+8te2VO1VoHL0AAAAAAAAAADP/bjx0pZ8/RdxzPMC12ryTqXE7tnHVPAAAAAAAAAAAgHhTPdZD4z662Zm+bnITvqTihL4aFhy/AAAAAAAAAACa1mO9e1GmP+qS77xn5YS8qKlRvW/ACz4AAAAAAAAAANqSTz7Q15E/m20dPVz0orze+CI+P4KdPQAAAAAAAAAAwFW2PUZzqT8tr489GVyHPIYe6j10RKS9AAAAAAAAAACahfG7lbStPyFwtDzFZ6u7I3RWvdY96rwAAAAAAAAAAOZ6dT15I6k/JhmEvO6QhDyOgb68DksFPQAAAAAAAAAAZp2vPakvnj9a/nO97ZmBOwxuPr4linw9AAAAAAAAAAAAYJm7L2WpP4j/I7wVFf67R06gvL3BoD0AAAAAAAAAADPTMDwERZg/z08yvBbgbzwSXkW9JAKSPAAAAAAAAAAADeOWvWJcrD8QQZk8piHNvJqYaTyA7BA9AAAAAAAAAACaq8S8IlyuP4i56jt9fuO8fl+hvCY1B70AAAAAAAAAAFpBxz3kdKs/KoeOPR4ylTze6PY95q7yvAAAAAAAAAAAGoFwvVwWnT9uFjk9LajbO+Qc8DySfQs9AAAAAAAAAABmzRa9HC6fP3bCcjycBpq87DBdvIJai70AAAAAAAAAADo2oz5CzIU/bu2BvC6t87wN3J+8Sk2OvQAAAAAAAAAATWWrPXAQoD+R4L+8k+EVvTHuwrxl/vQ8AAAAAAAAAABNWi49E76ePy7TyLtH8Eq8n9USvZ5+2b0AAAAAAAAAAIarjj7ZJZg/fd59vLy8Jr4YMRM/xTrRvgAAAAAAAAAAjbzePXvStj+6Nj0+9iQevnjH8L3OY9U+AAAAAAAAAAAmrSQ+b+ufP36YoLoG6a+8Bc/xPEp/hT0AAAAAAAAAAID1jT2VPbU/wryIPs5v2rxs0C4+cmiYPgAAAAAAAAAAwI7dvTkLoT9/H5Y8p3UNPPEVwDwAc7s8AAAAAAAAAADN8DO+1TSQPzsq1L0q3dy+/dzRPh4Dwr4AAAAAAAAAANoIVD6HS4s//tlIPWnV4rxw/3w8oDmDPAAAAAAAAAAA88epPd1JrD9tON+8LpruvLISYr3ys9e7AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
31
+ },
32
+ "_last_episode_starts": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
35
+ },
36
+ "_last_original_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJZen76MucI+AgoPPdkNm71p70a/gcOWvgAAAAAAAAAAdo6FPhTymT9+Kyy8erREO22zJLykoBC+AAAAAAAAAABawgG+kMeiP27fpDs60aC5+kfuulbcoDsAAAAAAAAAAHCac75VlI0//ks4vN9kKL13tU09oviOPQAAAAAAAAAAGrzWvQ/pgT8alQC8/UPVvCdmBbxi7629AAAAAAAAAACTai8+//GWP7oLHrtGUog86X3UOy50ob0AAAAAAAAAADNXbDwjuZ8/emSquhGj9LwSSRw7v8InPAAAAAAAAAAAzQFhPebd5D75Vam+pKogvquNar7ODyC/AAAAAAAAAABN7GK9oF2mPz3qr7yFlCQ88JxtvViC1z0AAAAAAAAAAAYkTz4u5pE/m8FlPTvLhLzQCB8+SZC1PQAAAAAAAAAADfu0PVJnqT/FG3w9IPYuPSZV8j0+kDq9AAAAAAAAAADNRPi7Z7itPyMIBz1+TyC9/ZhQvbIkXbwAAAAAAAAAALMSdj2RF6k/ivEzvIbE3LzT1cu8DwQkPQAAAAAAAAAAmsWwPQgtnj/l+3+9rBPnuyuWQb7pp409AAAAAAAAAADNZJe78mqpPzVimTljapo8B3XAvPl/GD0AAAAAAAAAAAB2Mjw+Opg/nsG6vG9qTbyHBEm9CMUlPAAAAAAAAAAAjU6XvdZurD/7XYk88CADvYicTDxdugY9AAAAAAAAAADNHsW8mHCuP3AK0LuhqiK9MtqTvMLDOL0AAAAAAAAAAE3cxT2NZ6s/VkCIPVJuEDxz8fk9i6MfvQAAAAAAAAAAAG1yvWURnT/1L2M9OwQLPfAp4jygcey7AAAAAAAAAACzRBe99DufPxnFtrqnUta8GHMlvAqJqr0AAAAAAAAAAKBPoz4o4oU/Ye2BvBW4Sbs3ZoO8TE2OvQAAAAAAAAAAJtirPW8roD+N4L+8bZ0ivB4uz7xu/vQ8AAAAAAAAAADm0i49HseeP0OXtrxgsSW9gyv6vACh9L0AAAAAAAAAAHDWjj6Go5g/skPNvIxdEL4qbBg/noi2vgAAAAAAAAAAAIbaPa9Ftz/t/yo+1eQmvoS6Db4wQtA+AAAAAAAAAACzpyQ+OPufP/UQT7yOvaY79xvXPLYg4z0AAAAAAAAAAGYviD0MULU/+i+XPtKMbb0ikx8+EaafPgAAAAAAAAAA8/TdvdgEoT/imY47o+K9vJq2tjxriPM7AAAAAAAAAABNszK+unaRP2LNvr3H2OC+WJDbPoP5x74AAAAAAAAAAC2GUz7wX4s/27NrPWDPrLoX4G88SqeTvAAAAAAAAAAAjViqPVVfrD/OaRq9vgshvZO5YL26pWG8AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
39
+ },
40
+ "_episode_num": 958,
41
+ "use_sde": false,
42
+ "sde_sample_freq": -1,
43
+ "_current_progress_remaining": -0.00019199999999996997,
44
+ "_stats_window_size": 100,
45
+ "ep_info_buffer": {
46
+ ":type:": "<class 'collections.deque'>",
47
+ ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDJuhTOxB6MAWyUTT4BjAF0lEdAkAGA+yJKrnV9lChoBkdAaVTHLA57xGgHTV4CaAhHQJAEQjmjj711fZQoaAZHQHEm3lGPPs1oB01ZAWgIR0CQBqFRYRukdX2UKGgGR0AnQbfgrH2iaAdL22gIR0CQB7fcer+6dX2UKGgGR8Bix6xxDLKWaAdN6ANoCEdAkAhxMJx//nV9lChoBkdAaM60/GEPD2gHTWMCaAhHQJATnBacI7h1fZQoaAZHQG27qKpDNQloB03pAWgIR0CQE/oSL61tdX2UKGgGR8Beo/JV81GcaAdN6ANoCEdAkBeJ9NN8E3V9lChoBkdAbLJ+lTFVDWgHTbQBaAhHQJAasAbQ1Jl1fZQoaAZHwF3DNtqHoHNoB03oA2gIR0CQHdcsUZeidX2UKGgGR8BjIOMKkVN6aAdNDQFoCEdAkB/Ac94eLnV9lChoBkfAUSCCXhOxjmgHTegDaAhHQJAhIbJfYz11fZQoaAZHQGR7AH/tICloB01cAmgIR0CQIg08/2TQdX2UKGgGR0BpHwpnYg7paAdN4AJoCEdAkCNpI6KceHV9lChoBkdAardTjNpudmgHTWACaAhHQJAq0meDnNh1fZQoaAZHQGax35WRzRxoB03WAWgIR0CQL8Pkq+ajdX2UKGgGR0Bq0txlxwQ2aAdNZwFoCEdAkDBEbtJFs3V9lChoBkfAXN0384xUN2gHTegDaAhHQJAwyLQ5WBB1fZQoaAZHwF11Gh24d6toB03oA2gIR0CQNYs+FDfFdX2UKGgGR8BfJD2WY4Q0aAdN6ANoCEdAkDcF2JSBLHV9lChoBkfAY7zG9YfW+WgHTegDaAhHQJA3zeVLSNR1fZQoaAZHwGDPWH1vl2hoB03oA2gIR0CQOWsJpnHvdX2UKGgGR8BRaNqpLmITaAdNMAFoCEdAkD3Oj7ALzHV9lChoBkfAVsmwV0tAcGgHTegDaAhHQJBAVIBikO91fZQoaAZHQGet3yy2QXBoB00cAmgIR0CQRczollbvdX2UKGgGR8BdGcy8BdUsaAdN6ANoCEdAkE2sma6ST3V9lChoBkfAXcJSBK+SKWgHTegDaAhHQJBPYCYCyQh1fZQoaAZHwF+quMuOCGxoB03oA2gIR0CQUYo9cKPXdX2UKGgGR8BgpBtWMju8aAdN6ANoCEdAkFna5oXbd3V9lChoBkdAaDIzl90A92gHTWUCaAhHQJBeZ6IFeOZ1fZQoaAZHwGAjGw7kn1FoB03oA2gIR0CQYeSOBDohdX2UKGgGR8BiA9NDc/MXaAdN6ANoCEdAkGICeiBXjnV9lChoBkfARzckSmIj4mgHTVoCaAhHQJBoAURFqi51fZQoaAZHwFwXgX/HYHxoB03oA2gIR0CQa1TfixVydX2UKGgGR8BUdAYP5HmSaAdN6ANoCEdAkGw/ms/6f3V9lChoBkfAYOjnSOR1YGgHTegDaAhHQJBtE1LrX191fZQoaAZHwGLgzSkTHsFoB0vyaAhHQJBvALw4KhN1fZQoaAZHwFrY9aEBbOhoB03oA2gIR0CQcBC/47A+dX2UKGgGR8BgnlTLns9kaAdN6ANoCEdAkHCKagElmnV9lChoBkfAWL4YekpI+WgHTegDaAhHQJB4Ds7dSEV1fZQoaAZHwGLsNmUW2w5oB03oA2gIR0CQfAaP0Zm7dX2UKGgGR0Bmpvxc3VCpaAdNvgJoCEdAkHzQBT4tYnV9lChoBkdAZa/5Rjz7M2gHTTYDaAhHQJB9tjEvTPV1fZQoaAZHwESPz3AVO9FoB0vYaAhHQJCIN4/u9e11fZQoaAZHwFtfCqIacZtoB03oA2gIR0CQiNt52QnydX2UKGgGR8BWA6QV9F4LaAdN6ANoCEdAkIk1AE+xGHV9lChoBkdAM4qo2n8892gHTRsBaAhHQJCJXQF9roJ1fZQoaAZHQGhw14X40uVoB02cAWgIR0CQixdj5KvndX2UKGgGR0BneQ0dilSCaAdNxQJoCEdAkJDkWqLjxXV9lChoBkfAYEqarFOwgWgHTegDaAhHQJCUV5nlGPR1fZQoaAZHwF7kuYx+KCRoB03oA2gIR0CQlcbPyCnQdX2UKGgGR8BklyBTXJ5naAdN6ANoCEdAkJf4Zl4C63V9lChoBkdAcHSFN+LFXWgHTdABaAhHQJCiX6/IsAh1fZQoaAZHwGLKl2V3Ux5oB03oA2gIR0CQo2hZha1UdX2UKGgGR8Bc9G8Empl0aAdN6ANoCEdAkKPgTh5xBHV9lChoBkfAYGbLSNOuaGgHTegDaAhHQJCkUt8NQTF1fZQoaAZHwFyYUy57PY5oB03oA2gIR0CQqFhWHUMHdX2UKGgGR8BkKWp0fYBeaAdN6ANoCEdAkKmnBk7OmnV9lChoBkfAYkKKAJ9iMGgHTegDaAhHQJCqWgVXV9Z1fZQoaAZHwGAHFSKm8/VoB03oA2gIR0CQq8vpyIYWdX2UKGgGR0ByIAg7o0Q9aAdNGAFoCEdAkK69nkDIR3V9lChoBkfAYQUh+OOsDGgHTegDaAhHQJCyJthuwX91fZQoaAZHQG10p9y925hoB00hAmgIR0CQs9Wu5jH5dX2UKGgGR8Bc3afFrEcbaAdN6ANoCEdAkLdc7hegMHV9lChoBkfAZIgOTaCcw2gHTUgBaAhHQJC5oxfv4M51fZQoaAZHQGwtNqgyuZFoB03lAWgIR0CQvFIPK+zudX2UKGgGR8Bdz88TzundaAdN6ANoCEdAkL5XktEofHV9lChoBkdAb8gBczImxGgHTaEBaAhHQJC/mT/yXld1fZQoaAZHwFmHWAwwj+toB03oA2gIR0CQv8RZU1htdX2UKGgGR0BvB+szVMEiaAdNDANoCEdAkMDFB2OhkHV9lChoBkdAZg62KEWZZ2gHTf0CaAhHQJDDSzVtoBd1fZQoaAZHQGpfisny/bloB00sAmgIR0CQw/zNliBodX2UKGgGR8BiGDGecx0uaAdN6ANoCEdAkMx8vduYQnV9lChoBkfAYbhYQJ5VwWgHTegDaAhHQJDPa0VrRBx1fZQoaAZHwFrBFmFrVONoB03oA2gIR0CQz4Z6lchUdX2UKGgGR0Bwodj2Bas7aAdNYAFoCEdAkNZy9ugpSnV9lChoBkfAWu3j81n/UGgHTegDaAhHQJDYdWvKU3Z1fZQoaAZHwGLpXsgMc6xoB03oA2gIR0CQ3MH2h7E6dX2UKGgGR0Btlb3bmEGraAdN3wFoCEdAkN1bLIPsiXV9lChoBkfAXvln8Kohp2gHTegDaAhHQJDofofSx7l1fZQoaAZHwGAqv8hs67xoB03oA2gIR0CQ6VX8wYcedX2UKGgGR8BksXoHLRrraAdN6ANoCEdAkOpQTh5xBHV9lChoBkfAYYD1Ng0CR2gHTegDaAhHQJD1+a8YhuB1fZQoaAZHwF7Op0OmR/5oB03oA2gIR0CQ9wtUGVzIdX2UKGgGR0Bl9RKaoddWaAdNAQNoCEdAkPg9sJpnH3V9lChoBkdAcVqJRfnfVWgHTXABaAhHQJD4PoxHoX91fZQoaAZHwF2dWilBQepoB03oA2gIR0CQ+T544ZMtdX2UKGgGR8BN3nWBjFyaaAdNNAJoCEdAkQDtFnZkCnV9lChoBkfAYvO9Gqgh82gHTegDaAhHQJEErFMqSYB1fZQoaAZHQGipsJQcghdoB02xAmgIR0CREqpVCHARdX2UKGgGR8BUpfo3aSLZaAdN6ANoCEdAkRP7drO7hHV9lChoBkfATVAnv2GqP2gHTegDaAhHQJEVNAHE/B51fZQoaAZHwFkX72tdRixoB03oA2gIR0CRFbipvP1MdX2UKGgGR0BvALa/RE4OaAdNSgJoCEdAkRgRkRSP2nV9lChoBkdAbn9+0gKWs2gHTQkCaAhHQJEYPk5p8F91fZQoaAZHwEsZ4VymygRoB03oA2gIR0CRG3oPTXrddX2UKGgGR8BdDNoFmnO0aAdN6ANoCEdAkR0ePq9oOHV9lChoBkfAXgRxffGdZ2gHTegDaAhHQJEeBJ17pmp1fZQoaAZHwGHKhyKekHloB03oA2gIR0CRI9/RmbsodX2UKGgGR8BgMsUoKD02aAdN6ANoCEdAkSo7ORkmQnVlLg=="
48
+ },
49
+ "ep_success_buffer": {
50
+ ":type:": "<class 'collections.deque'>",
51
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
52
+ },
53
+ "_n_updates": 7800,
54
+ "observation_space": {
55
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
56
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAACDAAAAgwAAAIMEAACDB2w/JwAAAIMEAAACAAAAAgJRoCksIhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMBGhpZ2iUaBIoliAAAAAAAAAAAAAgQAAAIEAAACBBAAAgQdsPyUAAACBBAACAPwAAgD+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGgcSwiFlGgVdJRSlIwIbG93X3JlcHKUjFtbIC0yLjUgICAgICAgIC0yLjUgICAgICAgLTEwLiAgICAgICAgLTEwLiAgICAgICAgIC02LjI4MzE4NTUgLTEwLgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWyAyLjUgICAgICAgIDIuNSAgICAgICAxMC4gICAgICAgIDEwLiAgICAgICAgIDYuMjgzMTg1NSAxMC4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
57
+ "dtype": "float32",
58
+ "_shape": [
59
+ 8
60
+ ],
61
+ "low": "[ -2.5 -2.5 -10. -10. -6.2831855 -10.\n -0. -0. ]",
62
+ "bounded_below": "[ True True True True True True True True]",
63
+ "high": "[ 2.5 2.5 10. 10. 6.2831855 10.\n 1. 1. ]",
64
+ "bounded_above": "[ True True True True True True True True]",
65
+ "low_repr": "[ -2.5 -2.5 -10. -10. -6.2831855 -10.\n -0. -0. ]",
66
+ "high_repr": "[ 2.5 2.5 10. 10. 6.2831855 10.\n 1. 1. ]",
67
+ "_np_random": null
68
+ },
69
+ "action_space": {
70
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
71
+ ":serialized:": "gAWVggEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRZ9OUBx7lwBp+NPnnV86FlgCMA2luY5SKESmB7GD0PbGKmgYRtam+Da4AdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSjhvA091YnViLg==",
72
+ "n": "4",
73
+ "start": "0",
74
+ "_shape": [],
75
+ "dtype": "int64",
76
+ "_np_random": "Generator(PCG64)"
77
+ },
78
+ "n_envs": 32,
79
+ "buffer_size": 50000,
80
+ "batch_size": 64,
81
+ "learning_starts": 1000,
82
+ "tau": 0.01,
83
+ "gamma": 0.99,
84
+ "gradient_steps": 1,
85
+ "optimize_memory_usage": false,
86
+ "replay_buffer_class": {
87
+ ":type:": "<class 'abc.ABCMeta'>",
88
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
89
+ "__module__": "stable_baselines3.common.buffers",
90
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
91
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
92
+ "__init__": "<function ReplayBuffer.__init__ at 0x74811c3c9e10>",
93
+ "add": "<function ReplayBuffer.add at 0x74811c3c9ea0>",
94
+ "sample": "<function ReplayBuffer.sample at 0x74811c3c9f30>",
95
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x74811c3c9fc0>",
96
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x74811c3ca050>)>",
97
+ "__abstractmethods__": "frozenset()",
98
+ "_abc_impl": "<_abc._abc_data object at 0x748128fda2c0>"
99
+ },
100
+ "replay_buffer_kwargs": {},
101
+ "train_freq": {
102
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
103
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
104
+ },
105
+ "use_sde_at_warmup": false,
106
+ "exploration_initial_eps": 1.0,
107
+ "exploration_final_eps": 0.02,
108
+ "exploration_fraction": 0.1,
109
+ "target_update_interval": 1000,
110
+ "_n_calls": 31256,
111
+ "max_grad_norm": 10,
112
+ "exploration_rate": 0.02,
113
+ "lr_schedule": {
114
+ ":type:": "<class 'function'>",
115
+ ":serialized:": "gAWVswMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovaG9tZS9vcmVuL3dvcmsvbGV3aXMvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFovaG9tZS9vcmVuL3dvcmsvbGV3aXMvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjAg8bGFtYmRhPpSMDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g+fZR9lChoGIwEZnVuY5RoJ4wZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RoKX2UaCtOaCxOaC1oGWguTmgvaDFHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIWUUpSFlGhHXZRoSX2UdYaUhlIwLg=="
116
+ },
117
+ "batch_norm_stats": [],
118
+ "batch_norm_stats_target": [],
119
+ "exploration_schedule": {
120
+ ":type:": "<class 'function'>",
121
+ ":serialized:": "gAWVbwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovaG9tZS9vcmVuL3dvcmsvbGV3aXMvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtzQwYMAQQBGAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFovaG9tZS9vcmVuL3dvcmsvbGV3aXMvLnZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHSlSlGgdKVKUh5R0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgvdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP5R64UeuFHuFlFKUaDdHP7mZmZmZmZqFlFKUaDdHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
122
+ }
123
+ }
dqn-LunarLander-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74f398b5aa1c3d9550f076cff60218637d5a138503d1789bf8047a2171c7885a
3
+ size 45344
dqn-LunarLander-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0071ac8284eaf179a1ca6c0f43940d46ca46fdb21d35dfa6fd4a0f73093ee27e
3
+ size 44466
dqn-LunarLander-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
dqn-LunarLander-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.9.3-76060903-generic-x86_64-with-glibc2.35 # 202405300957~1732141768~22.04~f2697e1 SMP PREEMPT_DYNAMIC Wed N
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.4.0
4
+ - PyTorch: 2.5.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 1.0.0
9
+ - OpenAI Gym: 0.26.2
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -84.56541899999999, "std_reward": 101.09279858916537, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-05T03:36:45.685072"}