Beegbrain commited on
Commit
e988f80
·
1 Parent(s): ffbeb51

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1145.25 +/- 432.99
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0-2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:366e9401047981887352251758186448c0ea6f567ab175fc4fceaf06d5adcb0c
3
+ size 129305
a2c-AntBulletEnv-v0-2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a2
a2c-AntBulletEnv-v0-2/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6229dfb50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6229dfbe0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6229dfc70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6229dfd00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb6229dfd90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb6229dfe20>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb6229dfeb0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6229dff40>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb6229e8040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6229e80d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6229e8160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6229e81f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb6229e5100>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 4000000,
63
+ "_total_timesteps": 4000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1676198941414782000,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL2FjaGFwaW4vLmNvbmRhL2VudnMvSHVnZ2luL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvYWNoYXBpbi8uY29uZGEvZW52cy9IdWdnaW4vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK+vAcAumyQ+iNcAPxSpwr+HIyC9gCeqPSI6MT7pzV4/xd3Uv9VCt7uFimC//pcHvGxaob8dssc8RfwmPzhANTzPFgXAk2uUug2vQD9MyN487hH7P5S5LTwR9WG/aJoivAA3cz/Hdh0/gKMDP7g0hT8GNAPAdWCHPxsTnL2qesK/GaTBvd1ubD1wj9o9JHVgP+lyxL9iWcK7PMdrv/qomLyp0aC/VRRoOxxrOj+1Dgk9/zEFwCgkO7zMIz8/rsQCPSX+hj9PQKE7MThgv/jRBbwAN3M/x3YdP4CjAz+4NIU/VsQAvhlq7D8HLMG/HDN5PwPilD9+8ak/Ys2cP92zY75bUWI9ZtY5PzpCpj9Rrgc/+MTCP7xyR79Ni5g+ffSlvmHjVD+VqSS/UYBTP+rqkj4oNiO/5VGuPv2Nar8rS+O/hrqGvy8Z0L+AowM/u/51vzRyhD7pfbU/eSYQv/2sbT8mZf4/xGyBv73s1zyg0ty9VQduvoh/7b/l15W9bGArQM+NKj9jHg+/wIxfPGQPCz2+ayA/qpnZv+qai77ukD5ATxiRPswEIcDE5Do/sgTFv4a6hr/Hdh0/gKMDP7g0hT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABuALK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXCztPQAAAAAD8Oe/AAAAALjDwr0AAAAAXyXwPwAAAAC9v+49AAAAAH+g5T8AAAAAbeIFPgAAAACOLui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZC2BNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP8fEr4AAAAAtdjbvwAAAABX8BU9AAAAAOl66j8AAAAAcL0VvQAAAAAkKPo/AAAAAIIlgLwAAAAAhkvkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9YszYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAdrZ+9AAAAADcv4b8AAAAAqhMROgAAAADIP+I/AAAAABKGrD0AAAAAXwrmPwAAAAAm+o29AAAAACSQ3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEb7U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxGuEvQAAAACtndu/AAAAAHrklDwAAAAADfH5PwAAAACQZcw9AAAAAAAZ2z8AAAAAvJ5ZvQAAAAAWmOC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwFBnM+u/2MAWyUTegDjAF0lEdAuQH4I9kjHHV9lChoBkdAnI8yy2QXAWgHTegDaAhHQLkCw0ulGgB1fZQoaAZHQIiAy1RceKdoB03oA2gIR0C5Ax9kBjnWdX2UKGgGR0CZSnigkC3gaAdN6ANoCEdAuQfmobXHznV9lChoBkdAmqmBcJMQE2gHTegDaAhHQLkIerbg0j11fZQoaAZHQJNbcdU83ddoB03oA2gIR0C5CUD+irT6dX2UKGgGR0CcVfLFXJYDaAdN6ANoCEdAuQmes5n14HV9lChoBkdAg00EkjX4CmgHTegDaAhHQLkOZzkZJkJ1fZQoaAZHQJn/bBbfP5ZoB03oA2gIR0C5DvHNPgvUdX2UKGgGR0CcW6yp71IzaAdN6ANoCEdAuQ+4WtU4rHV9lChoBkdAm6UWhEjPfWgHTegDaAhHQLkQEXJYDDF1fZQoaAZHQJcIs6GQCCBoB03oA2gIR0C5FNGYrrgPdX2UKGgGR0CZetlHSWqtaAdN6ANoCEdAuRVnDwYtQXV9lChoBkdAnC6uvQnhKmgHTegDaAhHQLkWLTgl4Tt1fZQoaAZHQJvvO+UQkHFoB03oA2gIR0C5Fo1oYekpdX2UKGgGR0CQNxYzBRAKaAdNywJoCEdAuRqqoOx0MnV9lChoBkdAnsgux8lXzWgHTegDaAhHQLkbJtmcvuh1fZQoaAZHQJ2GChAWznloB03oA2gIR0C5G7cD8tPIdX2UKGgGR0CZp9+UhV2iaAdN6ANoCEdAuRzYUrTYunV9lChoBkdAmKqyxqwhXGgHTegDaAhHQLkhGHsC1Z11fZQoaAZHQJuH4Si/O+toB03oA2gIR0C5IZOYc/+sdX2UKGgGR0Cc/w/zJ6ppaAdN6ANoCEdAuSIcl5WzW3V9lChoBkdAnKSMzMzMzWgHTegDaAhHQLkjPaSLZSN1fZQoaAZHQJ3ATIaLn9xoB03oA2gIR0C5J1SJO32FdX2UKGgGR0CaFSrSmZVoaAdN6ANoCEdAuSfRShrWRXV9lChoBkdAnQAU3Kji42gHTegDaAhHQLkoaj0cwQF1fZQoaAZHQJmG/1e0G/xoB03oA2gIR0C5KazsIE8rdX2UKGgGR0B6MobZOBUaaAdN6ANoCEdAuS4bsWweNnV9lChoBkdAmcSQp4KQaWgHTegDaAhHQLkumDzRQad1fZQoaAZHQJwjuwzLwF1oB03oA2gIR0C5LyGSdOIqdX2UKGgGR0CbtYWnCO3laAdN6ANoCEdAuTBCHKwIMXV9lChoBkdAm76OqioKlmgHTegDaAhHQLk0ldHlOoJ1fZQoaAZHQJkLyGbkOqhoB03oA2gIR0C5NRmRzRx+dX2UKGgGR0Cd2RE/0NBoaAdN6ANoCEdAuTWuHxjJ+3V9lChoBkdAngYyfg75mGgHTegDaAhHQLk220qYqoZ1fZQoaAZHQJ4i3vRZ2ZBoB03oA2gIR0C5O0U9IPK/dX2UKGgGR0CeLVDEm6XjaAdN6ANoCEdAuTvOBWgezXV9lChoBkdAm3pAjMV1wGgHTegDaAhHQLk8aYQarFR1fZQoaAZHQJ1l5XNke6toB03oA2gIR0C5Pa5n6EamdX2UKGgGR0CdpSV6/qPfaAdN6ANoCEdAuUIFcUuct3V9lChoBkdAn1q2pAD7qWgHTegDaAhHQLlChtBfKIV1fZQoaAZHQJ9otqzqrzZoB03oA2gIR0C5QyFCkXUIdX2UKGgGR0CXpxRxLkCFaAdN6ANoCEdAuURTjBEa2nV9lChoBkdAnae8jRlYl2gHTegDaAhHQLlIz19fCyh1fZQoaAZHQJ7p9ipeeFtoB03oA2gIR0C5SUtIkJKKdX2UKGgGR0CduBNjslcAaAdN6ANoCEdAuUncaUA1enV9lChoBkdAnMkd9hJAdGgHTegDaAhHQLlLE/FzdUN1fZQoaAZHQJ8r5FuvUz9oB03oA2gIR0C5TzqCg9NfdX2UKGgGR0Ccy4hkiD/VaAdN6ANoCEdAuU+2iM5wO3V9lChoBkdAnaVnjyWiUWgHTegDaAhHQLlQQv2Xb/R1fZQoaAZHQH3e3ymQ8wJoB03oA2gIR0C5UWXg5zYFdX2UKGgGR0Cd4cJo0ygxaAdN6ANoCEdAuVWyFoL5RHV9lChoBkdAk+CIBzV+Z2gHTegDaAhHQLlWLm1IAfd1fZQoaAZHQJVXFK7I1cdoB03oA2gIR0C5Vrg5BC2MdX2UKGgGR0CY9zRE4NqhaAdN6ANoCEdAuVfVU6xPf3V9lChoBkdAnWCKy4Wk8GgHTegDaAhHQLlb/ZfUnXx1fZQoaAZHQJ2ipQMx46hoB03oA2gIR0C5XHkv0yxidX2UKGgGR0CbCEtga3qiaAdN6ANoCEdAuV0FA+pwTHV9lChoBkdAnRP6GDcuamgHTegDaAhHQLleRhX8wYd1fZQoaAZHQJxL0xKxs2xoB03oA2gIR0C5Ymy2H+IedX2UKGgGR0CVvE/t6X0HaAdN6ANoCEdAuWLpOARTTHV9lChoBkdAltn0jHGS6mgHTegDaAhHQLljdI91U2l1fZQoaAZHQJsew0tRNypoB03oA2gIR0C5ZJtKdxyXdX2UKGgGR0CbCgH5JsfraAdN6ANoCEdAuWjs7vG6w3V9lChoBkdAmaesN6PbPGgHTegDaAhHQLlpbl7+kxh1fZQoaAZHQJ0J+EUTL4hoB03oA2gIR0C5afgKfFrEdX2UKGgGR0CMg7w7T2FnaAdN6ANoCEdAuWsdX5nDi3V9lChoBkdAl25E21lXimgHTegDaAhHQLlvPFTvRZ51fZQoaAZHQJOH0COmzjZoB03oA2gIR0C5b7qBun/DdX2UKGgGR0CdNdlHBk7PaAdN6ANoCEdAuXBFT1kDp3V9lChoBkdAnPulENOM2mgHTegDaAhHQLlxZPvrnkl1fZQoaAZHQJuYDN7jT8ZoB03oA2gIR0C5daLeuV5bdX2UKGgGR0CatGCzkZJkaAdN6ANoCEdAuXYfRBu4w3V9lChoBkdAmNJVzZHuqmgHTegDaAhHQLl2s08NhE11fZQoaAZHQJrgYx+KCQNoB03oA2gIR0C5d9pmNBGAdX2UKGgGR0CeE9A3DNyHaAdN6ANoCEdAuXv6jynUD3V9lChoBkdAnCTSHh0heWgHTegDaAhHQLl8eOp84Px1fZQoaAZHQJkGU+A3DN1oB03oA2gIR0C5fQQBgeA/dX2UKGgGR0CONt8n/kvLaAdN6ANoCEdAuX5HRJEpiXV9lChoBkdAkyQpHEuQIWgHTegDaAhHQLmCfFd9lVd1fZQoaAZHQJgD7vKEFntoB03oA2gIR0C5gvf6XSjQdX2UKGgGR0CYrnK2rn1WaAdN6ANoCEdAuYODzyz5XXV9lChoBkdAnSAbLdN34mgHTegDaAhHQLmEpruIAOt1fZQoaAZHQJ0mgulGgBdoB03oA2gIR0C5iRA4wRGudX2UKGgGR0CcYV+kgwGoaAdN6ANoCEdAuYmOKZUkwHV9lChoBkdAi7OIEB8x9GgHTegDaAhHQLmKHH8CPp91fZQoaAZHQJRflsQ/X5FoB03oA2gIR0C5iz2GRFI/dX2UKGgGR0CagCnrY5DJaAdN6ANoCEdAuY9j4sVclnV9lChoBkdAm9lVxXGOuWgHTegDaAhHQLmP4JlJ6IF1fZQoaAZHQJjvFMdtEXtoB03oA2gIR0C5kG6eoUBXdX2UKGgGR0CT9HAYpDu0aAdN6ANoCEdAuZGnsC1Z1XV9lChoBkdAlEFUOy3TeGgHTegDaAhHQLmV8pgCwKV1fZQoaAZHQHg8/jGT9sJoB03oA2gIR0C5lm1ruYx+dX2UKGgGR0CdzjRyfcveaAdN6ANoCEdAuZb4JeE7GXV9lChoBkdAm0uoS+QEIWgHTegDaAhHQLmYID8tPHl1fZQoaAZHQIVsTDbah6BoB03oA2gIR0C5nGFTm4iHdX2UKGgGR0CbZUFpwjt5aAdN6ANoCEdAuZz1gCwKSnV9lChoBkdAiRCPuw5eaGgHTegDaAhHQLmdhzMzMzN1fZQoaAZHQJCOI3tKIzpoB03oA2gIR0C5nrRJmNBGdX2UKGgGR0B7hs2aUiY+aAdNXgFoCEdAuZ7BXGOuJXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 125000,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0-2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df80be7013c19e9fa9b9fe28fa01a1fe538169ff0150250debaac769302dc628
3
+ size 56190
a2c-AntBulletEnv-v0-2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:706c1636edbd2238e35cc7ddf3aca4862d3df0f348383518defb4cbb941d60fc
3
+ size 56894
a2c-AntBulletEnv-v0-2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0-2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.8.0a2
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6229dfb50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6229dfbe0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6229dfc70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6229dfd00>", "_build": "<function ActorCriticPolicy._build at 0x7fb6229dfd90>", "forward": "<function ActorCriticPolicy.forward at 0x7fb6229dfe20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb6229dfeb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6229dff40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb6229e8040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6229e80d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6229e8160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6229e81f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb6229e5100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 4000000, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676198941414782000, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL2FjaGFwaW4vLmNvbmRhL2VudnMvSHVnZ2luL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvYWNoYXBpbi8uY29uZGEvZW52cy9IdWdnaW4vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAK+vAcAumyQ+iNcAPxSpwr+HIyC9gCeqPSI6MT7pzV4/xd3Uv9VCt7uFimC//pcHvGxaob8dssc8RfwmPzhANTzPFgXAk2uUug2vQD9MyN487hH7P5S5LTwR9WG/aJoivAA3cz/Hdh0/gKMDP7g0hT8GNAPAdWCHPxsTnL2qesK/GaTBvd1ubD1wj9o9JHVgP+lyxL9iWcK7PMdrv/qomLyp0aC/VRRoOxxrOj+1Dgk9/zEFwCgkO7zMIz8/rsQCPSX+hj9PQKE7MThgv/jRBbwAN3M/x3YdP4CjAz+4NIU/VsQAvhlq7D8HLMG/HDN5PwPilD9+8ak/Ys2cP92zY75bUWI9ZtY5PzpCpj9Rrgc/+MTCP7xyR79Ni5g+ffSlvmHjVD+VqSS/UYBTP+rqkj4oNiO/5VGuPv2Nar8rS+O/hrqGvy8Z0L+AowM/u/51vzRyhD7pfbU/eSYQv/2sbT8mZf4/xGyBv73s1zyg0ty9VQduvoh/7b/l15W9bGArQM+NKj9jHg+/wIxfPGQPCz2+ayA/qpnZv+qai77ukD5ATxiRPswEIcDE5Do/sgTFv4a6hr/Hdh0/gKMDP7g0hT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABuALK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXCztPQAAAAAD8Oe/AAAAALjDwr0AAAAAXyXwPwAAAAC9v+49AAAAAH+g5T8AAAAAbeIFPgAAAACOLui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZC2BNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP8fEr4AAAAAtdjbvwAAAABX8BU9AAAAAOl66j8AAAAAcL0VvQAAAAAkKPo/AAAAAIIlgLwAAAAAhkvkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9YszYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAdrZ+9AAAAADcv4b8AAAAAqhMROgAAAADIP+I/AAAAABKGrD0AAAAAXwrmPwAAAAAm+o29AAAAACSQ3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEb7U2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxGuEvQAAAACtndu/AAAAAHrklDwAAAAADfH5PwAAAACQZcw9AAAAAAAZ2z8AAAAAvJ5ZvQAAAAAWmOC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwFBnM+u/2MAWyUTegDjAF0lEdAuQH4I9kjHHV9lChoBkdAnI8yy2QXAWgHTegDaAhHQLkCw0ulGgB1fZQoaAZHQIiAy1RceKdoB03oA2gIR0C5Ax9kBjnWdX2UKGgGR0CZSnigkC3gaAdN6ANoCEdAuQfmobXHznV9lChoBkdAmqmBcJMQE2gHTegDaAhHQLkIerbg0j11fZQoaAZHQJNbcdU83ddoB03oA2gIR0C5CUD+irT6dX2UKGgGR0CcVfLFXJYDaAdN6ANoCEdAuQmes5n14HV9lChoBkdAg00EkjX4CmgHTegDaAhHQLkOZzkZJkJ1fZQoaAZHQJn/bBbfP5ZoB03oA2gIR0C5DvHNPgvUdX2UKGgGR0CcW6yp71IzaAdN6ANoCEdAuQ+4WtU4rHV9lChoBkdAm6UWhEjPfWgHTegDaAhHQLkQEXJYDDF1fZQoaAZHQJcIs6GQCCBoB03oA2gIR0C5FNGYrrgPdX2UKGgGR0CZetlHSWqtaAdN6ANoCEdAuRVnDwYtQXV9lChoBkdAnC6uvQnhKmgHTegDaAhHQLkWLTgl4Tt1fZQoaAZHQJvvO+UQkHFoB03oA2gIR0C5Fo1oYekpdX2UKGgGR0CQNxYzBRAKaAdNywJoCEdAuRqqoOx0MnV9lChoBkdAnsgux8lXzWgHTegDaAhHQLkbJtmcvuh1fZQoaAZHQJ2GChAWznloB03oA2gIR0C5G7cD8tPIdX2UKGgGR0CZp9+UhV2iaAdN6ANoCEdAuRzYUrTYunV9lChoBkdAmKqyxqwhXGgHTegDaAhHQLkhGHsC1Z11fZQoaAZHQJuH4Si/O+toB03oA2gIR0C5IZOYc/+sdX2UKGgGR0Cc/w/zJ6ppaAdN6ANoCEdAuSIcl5WzW3V9lChoBkdAnKSMzMzMzWgHTegDaAhHQLkjPaSLZSN1fZQoaAZHQJ3ATIaLn9xoB03oA2gIR0C5J1SJO32FdX2UKGgGR0CaFSrSmZVoaAdN6ANoCEdAuSfRShrWRXV9lChoBkdAnQAU3Kji42gHTegDaAhHQLkoaj0cwQF1fZQoaAZHQJmG/1e0G/xoB03oA2gIR0C5KazsIE8rdX2UKGgGR0B6MobZOBUaaAdN6ANoCEdAuS4bsWweNnV9lChoBkdAmcSQp4KQaWgHTegDaAhHQLkumDzRQad1fZQoaAZHQJwjuwzLwF1oB03oA2gIR0C5LyGSdOIqdX2UKGgGR0CbtYWnCO3laAdN6ANoCEdAuTBCHKwIMXV9lChoBkdAm76OqioKlmgHTegDaAhHQLk0ldHlOoJ1fZQoaAZHQJkLyGbkOqhoB03oA2gIR0C5NRmRzRx+dX2UKGgGR0Cd2RE/0NBoaAdN6ANoCEdAuTWuHxjJ+3V9lChoBkdAngYyfg75mGgHTegDaAhHQLk220qYqoZ1fZQoaAZHQJ4i3vRZ2ZBoB03oA2gIR0C5O0U9IPK/dX2UKGgGR0CeLVDEm6XjaAdN6ANoCEdAuTvOBWgezXV9lChoBkdAm3pAjMV1wGgHTegDaAhHQLk8aYQarFR1fZQoaAZHQJ1l5XNke6toB03oA2gIR0C5Pa5n6EamdX2UKGgGR0CdpSV6/qPfaAdN6ANoCEdAuUIFcUuct3V9lChoBkdAn1q2pAD7qWgHTegDaAhHQLlChtBfKIV1fZQoaAZHQJ9otqzqrzZoB03oA2gIR0C5QyFCkXUIdX2UKGgGR0CXpxRxLkCFaAdN6ANoCEdAuURTjBEa2nV9lChoBkdAnae8jRlYl2gHTegDaAhHQLlIz19fCyh1fZQoaAZHQJ7p9ipeeFtoB03oA2gIR0C5SUtIkJKKdX2UKGgGR0CduBNjslcAaAdN6ANoCEdAuUncaUA1enV9lChoBkdAnMkd9hJAdGgHTegDaAhHQLlLE/FzdUN1fZQoaAZHQJ8r5FuvUz9oB03oA2gIR0C5TzqCg9NfdX2UKGgGR0Ccy4hkiD/VaAdN6ANoCEdAuU+2iM5wO3V9lChoBkdAnaVnjyWiUWgHTegDaAhHQLlQQv2Xb/R1fZQoaAZHQH3e3ymQ8wJoB03oA2gIR0C5UWXg5zYFdX2UKGgGR0Cd4cJo0ygxaAdN6ANoCEdAuVWyFoL5RHV9lChoBkdAk+CIBzV+Z2gHTegDaAhHQLlWLm1IAfd1fZQoaAZHQJVXFK7I1cdoB03oA2gIR0C5Vrg5BC2MdX2UKGgGR0CY9zRE4NqhaAdN6ANoCEdAuVfVU6xPf3V9lChoBkdAnWCKy4Wk8GgHTegDaAhHQLlb/ZfUnXx1fZQoaAZHQJ2ipQMx46hoB03oA2gIR0C5XHkv0yxidX2UKGgGR0CbCEtga3qiaAdN6ANoCEdAuV0FA+pwTHV9lChoBkdAnRP6GDcuamgHTegDaAhHQLleRhX8wYd1fZQoaAZHQJxL0xKxs2xoB03oA2gIR0C5Ymy2H+IedX2UKGgGR0CVvE/t6X0HaAdN6ANoCEdAuWLpOARTTHV9lChoBkdAltn0jHGS6mgHTegDaAhHQLljdI91U2l1fZQoaAZHQJsew0tRNypoB03oA2gIR0C5ZJtKdxyXdX2UKGgGR0CbCgH5JsfraAdN6ANoCEdAuWjs7vG6w3V9lChoBkdAmaesN6PbPGgHTegDaAhHQLlpbl7+kxh1fZQoaAZHQJ0J+EUTL4hoB03oA2gIR0C5afgKfFrEdX2UKGgGR0CMg7w7T2FnaAdN6ANoCEdAuWsdX5nDi3V9lChoBkdAl25E21lXimgHTegDaAhHQLlvPFTvRZ51fZQoaAZHQJOH0COmzjZoB03oA2gIR0C5b7qBun/DdX2UKGgGR0CdNdlHBk7PaAdN6ANoCEdAuXBFT1kDp3V9lChoBkdAnPulENOM2mgHTegDaAhHQLlxZPvrnkl1fZQoaAZHQJuYDN7jT8ZoB03oA2gIR0C5daLeuV5bdX2UKGgGR0CatGCzkZJkaAdN6ANoCEdAuXYfRBu4w3V9lChoBkdAmNJVzZHuqmgHTegDaAhHQLl2s08NhE11fZQoaAZHQJrgYx+KCQNoB03oA2gIR0C5d9pmNBGAdX2UKGgGR0CeE9A3DNyHaAdN6ANoCEdAuXv6jynUD3V9lChoBkdAnCTSHh0heWgHTegDaAhHQLl8eOp84Px1fZQoaAZHQJkGU+A3DN1oB03oA2gIR0C5fQQBgeA/dX2UKGgGR0CONt8n/kvLaAdN6ANoCEdAuX5HRJEpiXV9lChoBkdAkyQpHEuQIWgHTegDaAhHQLmCfFd9lVd1fZQoaAZHQJgD7vKEFntoB03oA2gIR0C5gvf6XSjQdX2UKGgGR0CYrnK2rn1WaAdN6ANoCEdAuYODzyz5XXV9lChoBkdAnSAbLdN34mgHTegDaAhHQLmEpruIAOt1fZQoaAZHQJ0mgulGgBdoB03oA2gIR0C5iRA4wRGudX2UKGgGR0CcYV+kgwGoaAdN6ANoCEdAuYmOKZUkwHV9lChoBkdAi7OIEB8x9GgHTegDaAhHQLmKHH8CPp91fZQoaAZHQJRflsQ/X5FoB03oA2gIR0C5iz2GRFI/dX2UKGgGR0CagCnrY5DJaAdN6ANoCEdAuY9j4sVclnV9lChoBkdAm9lVxXGOuWgHTegDaAhHQLmP4JlJ6IF1fZQoaAZHQJjvFMdtEXtoB03oA2gIR0C5kG6eoUBXdX2UKGgGR0CT9HAYpDu0aAdN6ANoCEdAuZGnsC1Z1XV9lChoBkdAlEFUOy3TeGgHTegDaAhHQLmV8pgCwKV1fZQoaAZHQHg8/jGT9sJoB03oA2gIR0C5lm1ruYx+dX2UKGgGR0CdzjRyfcveaAdN6ANoCEdAuZb4JeE7GXV9lChoBkdAm0uoS+QEIWgHTegDaAhHQLmYID8tPHl1fZQoaAZHQIVsTDbah6BoB03oA2gIR0C5nGFTm4iHdX2UKGgGR0CbZUFpwjt5aAdN6ANoCEdAuZz1gCwKSnV9lChoBkdAiRCPuw5eaGgHTegDaAhHQLmdhzMzMzN1fZQoaAZHQJCOI3tKIzpoB03oA2gIR0C5nrRJmNBGdX2UKGgGR0B7hs2aUiY+aAdNXgFoCEdAuZ7BXGOuJXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 125000, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.10.9", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27e714bf41bd5a5bc19f5bd3e63bdfba1c47e774f437d7d9878d9a9315055db8
3
+ size 1009018
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1145.2477813993785, "std_reward": 432.9934392645254, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-12T13:41:56.666594"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81ec764e2b55fcdccf79b4cf0bcaba85ba359a6ef829a109b3deee44128854b2
3
+ size 2129