--- datasets: - zed-industries/zeta license: apache-2.0 tags: - mlx base_model: zed-industries/zeta --- # **About:** **Tuned from Qwen2.5 coder for coding tasks** - Its a fine-tuned version of Qwen2.5-Coder-7B to support [**__edit prediction__**](https://zed.dev/edit-prediction) in Zed. Fine-tuned using [__zeta dataset__](https://huggingface.co/datasets/zed-industries/zeta). *Special thanks to the folks at Zed Industries for fine-tuning this version of* *Qwen2.5-Coder-7B*. More information about the model can be found here: [https://huggingface.co/zed-industries/zeta](https://huggingface.co/zed-industries/zeta) (Base Model) [https://huggingface.co/lmstudio-community/zeta-GGUF](https://huggingface.co/lmstudio-community/zeta-GGUF) (GGUF Version) - Converted it to MLX format (using mlx-lm version **0.20.5**.) with a quantization of 8-bit for better performance on Apple Silicon Macs (M1,M2,M3,M4 Chips). - If looking for a larger or smaller (quantized) mlx model, see the models below. ## Other Types: | Link | Type | Size| Notes | |-------|-----------|-----------|-----------| | [MLX] (https://huggingface.co/AlejandroOlmedo/zeta-mlx) | Full | 15.2 GB | **Best Quality** | | [MLX] (https://huggingface.co/AlejandroOlmedo/zeta-8bit-mlx) | 8-bit | 8.10 GB | **Better Quality** | | [MLX] (https://huggingface.co/AlejandroOlmedo/zeta-4bit-mlx) | 4-bit | 4.30 GB | Good Quality| # AlejandroOlmedo/zeta-8bit-mlx The Model [AlejandroOlmedo/zeta-8bit-mlx](https://huggingface.co/AlejandroOlmedo/zeta-8bit-mlx) was converted to MLX format from [zed-industries/zeta](https://huggingface.co/zed-industries/zeta) using mlx-lm version **0.20.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("AlejandroOlmedo/zeta-8bit-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```